Proof of Theorem bnj1286
| Step | Hyp | Ref
| Expression |
| 1 | | bnj1286.7 |
. . . . 5
⊢ (𝜓 ↔ (𝜑 ∧ 𝑥 ∈ 𝐸 ∧ ∀𝑦 ∈ 𝐸 ¬ 𝑦𝑅𝑥)) |
| 2 | | bnj1286.1 |
. . . . . . . . 9
⊢ 𝐵 = {𝑑 ∣ (𝑑 ⊆ 𝐴 ∧ ∀𝑥 ∈ 𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑)} |
| 3 | | bnj1286.2 |
. . . . . . . . 9
⊢ 𝑌 = 〈𝑥, (𝑓 ↾ pred(𝑥, 𝐴, 𝑅))〉 |
| 4 | | bnj1286.3 |
. . . . . . . . 9
⊢ 𝐶 = {𝑓 ∣ ∃𝑑 ∈ 𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥 ∈ 𝑑 (𝑓‘𝑥) = (𝐺‘𝑌))} |
| 5 | | bnj1286.4 |
. . . . . . . . 9
⊢ 𝐷 = (dom 𝑔 ∩ dom ℎ) |
| 6 | | bnj1286.5 |
. . . . . . . . 9
⊢ 𝐸 = {𝑥 ∈ 𝐷 ∣ (𝑔‘𝑥) ≠ (ℎ‘𝑥)} |
| 7 | | bnj1286.6 |
. . . . . . . . 9
⊢ (𝜑 ↔ (𝑅 FrSe 𝐴 ∧ 𝑔 ∈ 𝐶 ∧ ℎ ∈ 𝐶 ∧ (𝑔 ↾ 𝐷) ≠ (ℎ ↾ 𝐷))) |
| 8 | 2, 3, 4, 5, 6, 7, 1 | bnj1256 35029 |
. . . . . . . 8
⊢ (𝜑 → ∃𝑑 ∈ 𝐵 𝑔 Fn 𝑑) |
| 9 | 8 | bnj1196 34808 |
. . . . . . 7
⊢ (𝜑 → ∃𝑑(𝑑 ∈ 𝐵 ∧ 𝑔 Fn 𝑑)) |
| 10 | 2 | bnj1517 34864 |
. . . . . . . . 9
⊢ (𝑑 ∈ 𝐵 → ∀𝑥 ∈ 𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑) |
| 11 | 10 | adantr 480 |
. . . . . . . 8
⊢ ((𝑑 ∈ 𝐵 ∧ 𝑔 Fn 𝑑) → ∀𝑥 ∈ 𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑) |
| 12 | | fndm 6671 |
. . . . . . . . . 10
⊢ (𝑔 Fn 𝑑 → dom 𝑔 = 𝑑) |
| 13 | | sseq2 4010 |
. . . . . . . . . . 11
⊢ (dom
𝑔 = 𝑑 → ( pred(𝑥, 𝐴, 𝑅) ⊆ dom 𝑔 ↔ pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑)) |
| 14 | 13 | raleqbi1dv 3338 |
. . . . . . . . . 10
⊢ (dom
𝑔 = 𝑑 → (∀𝑥 ∈ dom 𝑔 pred(𝑥, 𝐴, 𝑅) ⊆ dom 𝑔 ↔ ∀𝑥 ∈ 𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑)) |
| 15 | 12, 14 | syl 17 |
. . . . . . . . 9
⊢ (𝑔 Fn 𝑑 → (∀𝑥 ∈ dom 𝑔 pred(𝑥, 𝐴, 𝑅) ⊆ dom 𝑔 ↔ ∀𝑥 ∈ 𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑)) |
| 16 | 15 | adantl 481 |
. . . . . . . 8
⊢ ((𝑑 ∈ 𝐵 ∧ 𝑔 Fn 𝑑) → (∀𝑥 ∈ dom 𝑔 pred(𝑥, 𝐴, 𝑅) ⊆ dom 𝑔 ↔ ∀𝑥 ∈ 𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑)) |
| 17 | 11, 16 | mpbird 257 |
. . . . . . 7
⊢ ((𝑑 ∈ 𝐵 ∧ 𝑔 Fn 𝑑) → ∀𝑥 ∈ dom 𝑔 pred(𝑥, 𝐴, 𝑅) ⊆ dom 𝑔) |
| 18 | 9, 17 | bnj593 34759 |
. . . . . 6
⊢ (𝜑 → ∃𝑑∀𝑥 ∈ dom 𝑔 pred(𝑥, 𝐴, 𝑅) ⊆ dom 𝑔) |
| 19 | 18 | bnj937 34785 |
. . . . 5
⊢ (𝜑 → ∀𝑥 ∈ dom 𝑔 pred(𝑥, 𝐴, 𝑅) ⊆ dom 𝑔) |
| 20 | 1, 19 | bnj835 34773 |
. . . 4
⊢ (𝜓 → ∀𝑥 ∈ dom 𝑔 pred(𝑥, 𝐴, 𝑅) ⊆ dom 𝑔) |
| 21 | 6 | ssrab3 4082 |
. . . . . . 7
⊢ 𝐸 ⊆ 𝐷 |
| 22 | 5 | bnj1292 34829 |
. . . . . . 7
⊢ 𝐷 ⊆ dom 𝑔 |
| 23 | 21, 22 | sstri 3993 |
. . . . . 6
⊢ 𝐸 ⊆ dom 𝑔 |
| 24 | 23 | sseli 3979 |
. . . . 5
⊢ (𝑥 ∈ 𝐸 → 𝑥 ∈ dom 𝑔) |
| 25 | 1, 24 | bnj836 34774 |
. . . 4
⊢ (𝜓 → 𝑥 ∈ dom 𝑔) |
| 26 | 20, 25 | bnj1294 34831 |
. . 3
⊢ (𝜓 → pred(𝑥, 𝐴, 𝑅) ⊆ dom 𝑔) |
| 27 | 2, 3, 4, 5, 6, 7, 1 | bnj1259 35030 |
. . . . . . . 8
⊢ (𝜑 → ∃𝑑 ∈ 𝐵 ℎ Fn 𝑑) |
| 28 | 27 | bnj1196 34808 |
. . . . . . 7
⊢ (𝜑 → ∃𝑑(𝑑 ∈ 𝐵 ∧ ℎ Fn 𝑑)) |
| 29 | 10 | adantr 480 |
. . . . . . . 8
⊢ ((𝑑 ∈ 𝐵 ∧ ℎ Fn 𝑑) → ∀𝑥 ∈ 𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑) |
| 30 | | fndm 6671 |
. . . . . . . . . 10
⊢ (ℎ Fn 𝑑 → dom ℎ = 𝑑) |
| 31 | | sseq2 4010 |
. . . . . . . . . . 11
⊢ (dom
ℎ = 𝑑 → ( pred(𝑥, 𝐴, 𝑅) ⊆ dom ℎ ↔ pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑)) |
| 32 | 31 | raleqbi1dv 3338 |
. . . . . . . . . 10
⊢ (dom
ℎ = 𝑑 → (∀𝑥 ∈ dom ℎ pred(𝑥, 𝐴, 𝑅) ⊆ dom ℎ ↔ ∀𝑥 ∈ 𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑)) |
| 33 | 30, 32 | syl 17 |
. . . . . . . . 9
⊢ (ℎ Fn 𝑑 → (∀𝑥 ∈ dom ℎ pred(𝑥, 𝐴, 𝑅) ⊆ dom ℎ ↔ ∀𝑥 ∈ 𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑)) |
| 34 | 33 | adantl 481 |
. . . . . . . 8
⊢ ((𝑑 ∈ 𝐵 ∧ ℎ Fn 𝑑) → (∀𝑥 ∈ dom ℎ pred(𝑥, 𝐴, 𝑅) ⊆ dom ℎ ↔ ∀𝑥 ∈ 𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑)) |
| 35 | 29, 34 | mpbird 257 |
. . . . . . 7
⊢ ((𝑑 ∈ 𝐵 ∧ ℎ Fn 𝑑) → ∀𝑥 ∈ dom ℎ pred(𝑥, 𝐴, 𝑅) ⊆ dom ℎ) |
| 36 | 28, 35 | bnj593 34759 |
. . . . . 6
⊢ (𝜑 → ∃𝑑∀𝑥 ∈ dom ℎ pred(𝑥, 𝐴, 𝑅) ⊆ dom ℎ) |
| 37 | 36 | bnj937 34785 |
. . . . 5
⊢ (𝜑 → ∀𝑥 ∈ dom ℎ pred(𝑥, 𝐴, 𝑅) ⊆ dom ℎ) |
| 38 | 1, 37 | bnj835 34773 |
. . . 4
⊢ (𝜓 → ∀𝑥 ∈ dom ℎ pred(𝑥, 𝐴, 𝑅) ⊆ dom ℎ) |
| 39 | 5 | bnj1293 34830 |
. . . . . . 7
⊢ 𝐷 ⊆ dom ℎ |
| 40 | 21, 39 | sstri 3993 |
. . . . . 6
⊢ 𝐸 ⊆ dom ℎ |
| 41 | 40 | sseli 3979 |
. . . . 5
⊢ (𝑥 ∈ 𝐸 → 𝑥 ∈ dom ℎ) |
| 42 | 1, 41 | bnj836 34774 |
. . . 4
⊢ (𝜓 → 𝑥 ∈ dom ℎ) |
| 43 | 38, 42 | bnj1294 34831 |
. . 3
⊢ (𝜓 → pred(𝑥, 𝐴, 𝑅) ⊆ dom ℎ) |
| 44 | 26, 43 | ssind 4241 |
. 2
⊢ (𝜓 → pred(𝑥, 𝐴, 𝑅) ⊆ (dom 𝑔 ∩ dom ℎ)) |
| 45 | 44, 5 | sseqtrrdi 4025 |
1
⊢ (𝜓 → pred(𝑥, 𝐴, 𝑅) ⊆ 𝐷) |