Proof of Theorem bnj1286
Step | Hyp | Ref
| Expression |
1 | | bnj1286.7 |
. . . . 5
⊢ (𝜓 ↔ (𝜑 ∧ 𝑥 ∈ 𝐸 ∧ ∀𝑦 ∈ 𝐸 ¬ 𝑦𝑅𝑥)) |
2 | | bnj1286.1 |
. . . . . . . . 9
⊢ 𝐵 = {𝑑 ∣ (𝑑 ⊆ 𝐴 ∧ ∀𝑥 ∈ 𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑)} |
3 | | bnj1286.2 |
. . . . . . . . 9
⊢ 𝑌 = 〈𝑥, (𝑓 ↾ pred(𝑥, 𝐴, 𝑅))〉 |
4 | | bnj1286.3 |
. . . . . . . . 9
⊢ 𝐶 = {𝑓 ∣ ∃𝑑 ∈ 𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥 ∈ 𝑑 (𝑓‘𝑥) = (𝐺‘𝑌))} |
5 | | bnj1286.4 |
. . . . . . . . 9
⊢ 𝐷 = (dom 𝑔 ∩ dom ℎ) |
6 | | bnj1286.5 |
. . . . . . . . 9
⊢ 𝐸 = {𝑥 ∈ 𝐷 ∣ (𝑔‘𝑥) ≠ (ℎ‘𝑥)} |
7 | | bnj1286.6 |
. . . . . . . . 9
⊢ (𝜑 ↔ (𝑅 FrSe 𝐴 ∧ 𝑔 ∈ 𝐶 ∧ ℎ ∈ 𝐶 ∧ (𝑔 ↾ 𝐷) ≠ (ℎ ↾ 𝐷))) |
8 | 2, 3, 4, 5, 6, 7, 1 | bnj1256 32995 |
. . . . . . . 8
⊢ (𝜑 → ∃𝑑 ∈ 𝐵 𝑔 Fn 𝑑) |
9 | 8 | bnj1196 32774 |
. . . . . . 7
⊢ (𝜑 → ∃𝑑(𝑑 ∈ 𝐵 ∧ 𝑔 Fn 𝑑)) |
10 | 2 | bnj1517 32830 |
. . . . . . . . 9
⊢ (𝑑 ∈ 𝐵 → ∀𝑥 ∈ 𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑) |
11 | 10 | adantr 481 |
. . . . . . . 8
⊢ ((𝑑 ∈ 𝐵 ∧ 𝑔 Fn 𝑑) → ∀𝑥 ∈ 𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑) |
12 | | fndm 6536 |
. . . . . . . . . 10
⊢ (𝑔 Fn 𝑑 → dom 𝑔 = 𝑑) |
13 | | sseq2 3947 |
. . . . . . . . . . 11
⊢ (dom
𝑔 = 𝑑 → ( pred(𝑥, 𝐴, 𝑅) ⊆ dom 𝑔 ↔ pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑)) |
14 | 13 | raleqbi1dv 3340 |
. . . . . . . . . 10
⊢ (dom
𝑔 = 𝑑 → (∀𝑥 ∈ dom 𝑔 pred(𝑥, 𝐴, 𝑅) ⊆ dom 𝑔 ↔ ∀𝑥 ∈ 𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑)) |
15 | 12, 14 | syl 17 |
. . . . . . . . 9
⊢ (𝑔 Fn 𝑑 → (∀𝑥 ∈ dom 𝑔 pred(𝑥, 𝐴, 𝑅) ⊆ dom 𝑔 ↔ ∀𝑥 ∈ 𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑)) |
16 | 15 | adantl 482 |
. . . . . . . 8
⊢ ((𝑑 ∈ 𝐵 ∧ 𝑔 Fn 𝑑) → (∀𝑥 ∈ dom 𝑔 pred(𝑥, 𝐴, 𝑅) ⊆ dom 𝑔 ↔ ∀𝑥 ∈ 𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑)) |
17 | 11, 16 | mpbird 256 |
. . . . . . 7
⊢ ((𝑑 ∈ 𝐵 ∧ 𝑔 Fn 𝑑) → ∀𝑥 ∈ dom 𝑔 pred(𝑥, 𝐴, 𝑅) ⊆ dom 𝑔) |
18 | 9, 17 | bnj593 32725 |
. . . . . 6
⊢ (𝜑 → ∃𝑑∀𝑥 ∈ dom 𝑔 pred(𝑥, 𝐴, 𝑅) ⊆ dom 𝑔) |
19 | 18 | bnj937 32751 |
. . . . 5
⊢ (𝜑 → ∀𝑥 ∈ dom 𝑔 pred(𝑥, 𝐴, 𝑅) ⊆ dom 𝑔) |
20 | 1, 19 | bnj835 32739 |
. . . 4
⊢ (𝜓 → ∀𝑥 ∈ dom 𝑔 pred(𝑥, 𝐴, 𝑅) ⊆ dom 𝑔) |
21 | 6 | ssrab3 4015 |
. . . . . . 7
⊢ 𝐸 ⊆ 𝐷 |
22 | 5 | bnj1292 32795 |
. . . . . . 7
⊢ 𝐷 ⊆ dom 𝑔 |
23 | 21, 22 | sstri 3930 |
. . . . . 6
⊢ 𝐸 ⊆ dom 𝑔 |
24 | 23 | sseli 3917 |
. . . . 5
⊢ (𝑥 ∈ 𝐸 → 𝑥 ∈ dom 𝑔) |
25 | 1, 24 | bnj836 32740 |
. . . 4
⊢ (𝜓 → 𝑥 ∈ dom 𝑔) |
26 | 20, 25 | bnj1294 32797 |
. . 3
⊢ (𝜓 → pred(𝑥, 𝐴, 𝑅) ⊆ dom 𝑔) |
27 | 2, 3, 4, 5, 6, 7, 1 | bnj1259 32996 |
. . . . . . . 8
⊢ (𝜑 → ∃𝑑 ∈ 𝐵 ℎ Fn 𝑑) |
28 | 27 | bnj1196 32774 |
. . . . . . 7
⊢ (𝜑 → ∃𝑑(𝑑 ∈ 𝐵 ∧ ℎ Fn 𝑑)) |
29 | 10 | adantr 481 |
. . . . . . . 8
⊢ ((𝑑 ∈ 𝐵 ∧ ℎ Fn 𝑑) → ∀𝑥 ∈ 𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑) |
30 | | fndm 6536 |
. . . . . . . . . 10
⊢ (ℎ Fn 𝑑 → dom ℎ = 𝑑) |
31 | | sseq2 3947 |
. . . . . . . . . . 11
⊢ (dom
ℎ = 𝑑 → ( pred(𝑥, 𝐴, 𝑅) ⊆ dom ℎ ↔ pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑)) |
32 | 31 | raleqbi1dv 3340 |
. . . . . . . . . 10
⊢ (dom
ℎ = 𝑑 → (∀𝑥 ∈ dom ℎ pred(𝑥, 𝐴, 𝑅) ⊆ dom ℎ ↔ ∀𝑥 ∈ 𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑)) |
33 | 30, 32 | syl 17 |
. . . . . . . . 9
⊢ (ℎ Fn 𝑑 → (∀𝑥 ∈ dom ℎ pred(𝑥, 𝐴, 𝑅) ⊆ dom ℎ ↔ ∀𝑥 ∈ 𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑)) |
34 | 33 | adantl 482 |
. . . . . . . 8
⊢ ((𝑑 ∈ 𝐵 ∧ ℎ Fn 𝑑) → (∀𝑥 ∈ dom ℎ pred(𝑥, 𝐴, 𝑅) ⊆ dom ℎ ↔ ∀𝑥 ∈ 𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑)) |
35 | 29, 34 | mpbird 256 |
. . . . . . 7
⊢ ((𝑑 ∈ 𝐵 ∧ ℎ Fn 𝑑) → ∀𝑥 ∈ dom ℎ pred(𝑥, 𝐴, 𝑅) ⊆ dom ℎ) |
36 | 28, 35 | bnj593 32725 |
. . . . . 6
⊢ (𝜑 → ∃𝑑∀𝑥 ∈ dom ℎ pred(𝑥, 𝐴, 𝑅) ⊆ dom ℎ) |
37 | 36 | bnj937 32751 |
. . . . 5
⊢ (𝜑 → ∀𝑥 ∈ dom ℎ pred(𝑥, 𝐴, 𝑅) ⊆ dom ℎ) |
38 | 1, 37 | bnj835 32739 |
. . . 4
⊢ (𝜓 → ∀𝑥 ∈ dom ℎ pred(𝑥, 𝐴, 𝑅) ⊆ dom ℎ) |
39 | 5 | bnj1293 32796 |
. . . . . . 7
⊢ 𝐷 ⊆ dom ℎ |
40 | 21, 39 | sstri 3930 |
. . . . . 6
⊢ 𝐸 ⊆ dom ℎ |
41 | 40 | sseli 3917 |
. . . . 5
⊢ (𝑥 ∈ 𝐸 → 𝑥 ∈ dom ℎ) |
42 | 1, 41 | bnj836 32740 |
. . . 4
⊢ (𝜓 → 𝑥 ∈ dom ℎ) |
43 | 38, 42 | bnj1294 32797 |
. . 3
⊢ (𝜓 → pred(𝑥, 𝐴, 𝑅) ⊆ dom ℎ) |
44 | 26, 43 | ssind 4166 |
. 2
⊢ (𝜓 → pred(𝑥, 𝐴, 𝑅) ⊆ (dom 𝑔 ∩ dom ℎ)) |
45 | 44, 5 | sseqtrrdi 3972 |
1
⊢ (𝜓 → pred(𝑥, 𝐴, 𝑅) ⊆ 𝐷) |