Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj1286 Structured version   Visualization version   GIF version

Theorem bnj1286 35033
Description: Technical lemma for bnj60 35076. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj1286.1 𝐵 = {𝑑 ∣ (𝑑𝐴 ∧ ∀𝑥𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑)}
bnj1286.2 𝑌 = ⟨𝑥, (𝑓 ↾ pred(𝑥, 𝐴, 𝑅))⟩
bnj1286.3 𝐶 = {𝑓 ∣ ∃𝑑𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥𝑑 (𝑓𝑥) = (𝐺𝑌))}
bnj1286.4 𝐷 = (dom 𝑔 ∩ dom )
bnj1286.5 𝐸 = {𝑥𝐷 ∣ (𝑔𝑥) ≠ (𝑥)}
bnj1286.6 (𝜑 ↔ (𝑅 FrSe 𝐴𝑔𝐶𝐶 ∧ (𝑔𝐷) ≠ (𝐷)))
bnj1286.7 (𝜓 ↔ (𝜑𝑥𝐸 ∧ ∀𝑦𝐸 ¬ 𝑦𝑅𝑥))
Assertion
Ref Expression
bnj1286 (𝜓 → pred(𝑥, 𝐴, 𝑅) ⊆ 𝐷)
Distinct variable groups:   𝐴,𝑑,𝑓   𝐵,𝑓,𝑔   𝐵,,𝑓   𝑥,𝐷   𝑓,𝐺,𝑔   ,𝐺   𝑅,𝑑,𝑓   𝑔,𝑌   ,𝑌   𝑔,𝑑,𝑥,𝑓   ,𝑑,𝑥
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑓,𝑔,,𝑑)   𝜓(𝑥,𝑦,𝑓,𝑔,,𝑑)   𝐴(𝑥,𝑦,𝑔,)   𝐵(𝑥,𝑦,𝑑)   𝐶(𝑥,𝑦,𝑓,𝑔,,𝑑)   𝐷(𝑦,𝑓,𝑔,,𝑑)   𝑅(𝑥,𝑦,𝑔,)   𝐸(𝑥,𝑦,𝑓,𝑔,,𝑑)   𝐺(𝑥,𝑦,𝑑)   𝑌(𝑥,𝑦,𝑓,𝑑)

Proof of Theorem bnj1286
StepHypRef Expression
1 bnj1286.7 . . . . 5 (𝜓 ↔ (𝜑𝑥𝐸 ∧ ∀𝑦𝐸 ¬ 𝑦𝑅𝑥))
2 bnj1286.1 . . . . . . . . 9 𝐵 = {𝑑 ∣ (𝑑𝐴 ∧ ∀𝑥𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑)}
3 bnj1286.2 . . . . . . . . 9 𝑌 = ⟨𝑥, (𝑓 ↾ pred(𝑥, 𝐴, 𝑅))⟩
4 bnj1286.3 . . . . . . . . 9 𝐶 = {𝑓 ∣ ∃𝑑𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥𝑑 (𝑓𝑥) = (𝐺𝑌))}
5 bnj1286.4 . . . . . . . . 9 𝐷 = (dom 𝑔 ∩ dom )
6 bnj1286.5 . . . . . . . . 9 𝐸 = {𝑥𝐷 ∣ (𝑔𝑥) ≠ (𝑥)}
7 bnj1286.6 . . . . . . . . 9 (𝜑 ↔ (𝑅 FrSe 𝐴𝑔𝐶𝐶 ∧ (𝑔𝐷) ≠ (𝐷)))
82, 3, 4, 5, 6, 7, 1bnj1256 35029 . . . . . . . 8 (𝜑 → ∃𝑑𝐵 𝑔 Fn 𝑑)
98bnj1196 34808 . . . . . . 7 (𝜑 → ∃𝑑(𝑑𝐵𝑔 Fn 𝑑))
102bnj1517 34864 . . . . . . . . 9 (𝑑𝐵 → ∀𝑥𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑)
1110adantr 480 . . . . . . . 8 ((𝑑𝐵𝑔 Fn 𝑑) → ∀𝑥𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑)
12 fndm 6671 . . . . . . . . . 10 (𝑔 Fn 𝑑 → dom 𝑔 = 𝑑)
13 sseq2 4010 . . . . . . . . . . 11 (dom 𝑔 = 𝑑 → ( pred(𝑥, 𝐴, 𝑅) ⊆ dom 𝑔 ↔ pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑))
1413raleqbi1dv 3338 . . . . . . . . . 10 (dom 𝑔 = 𝑑 → (∀𝑥 ∈ dom 𝑔 pred(𝑥, 𝐴, 𝑅) ⊆ dom 𝑔 ↔ ∀𝑥𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑))
1512, 14syl 17 . . . . . . . . 9 (𝑔 Fn 𝑑 → (∀𝑥 ∈ dom 𝑔 pred(𝑥, 𝐴, 𝑅) ⊆ dom 𝑔 ↔ ∀𝑥𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑))
1615adantl 481 . . . . . . . 8 ((𝑑𝐵𝑔 Fn 𝑑) → (∀𝑥 ∈ dom 𝑔 pred(𝑥, 𝐴, 𝑅) ⊆ dom 𝑔 ↔ ∀𝑥𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑))
1711, 16mpbird 257 . . . . . . 7 ((𝑑𝐵𝑔 Fn 𝑑) → ∀𝑥 ∈ dom 𝑔 pred(𝑥, 𝐴, 𝑅) ⊆ dom 𝑔)
189, 17bnj593 34759 . . . . . 6 (𝜑 → ∃𝑑𝑥 ∈ dom 𝑔 pred(𝑥, 𝐴, 𝑅) ⊆ dom 𝑔)
1918bnj937 34785 . . . . 5 (𝜑 → ∀𝑥 ∈ dom 𝑔 pred(𝑥, 𝐴, 𝑅) ⊆ dom 𝑔)
201, 19bnj835 34773 . . . 4 (𝜓 → ∀𝑥 ∈ dom 𝑔 pred(𝑥, 𝐴, 𝑅) ⊆ dom 𝑔)
216ssrab3 4082 . . . . . . 7 𝐸𝐷
225bnj1292 34829 . . . . . . 7 𝐷 ⊆ dom 𝑔
2321, 22sstri 3993 . . . . . 6 𝐸 ⊆ dom 𝑔
2423sseli 3979 . . . . 5 (𝑥𝐸𝑥 ∈ dom 𝑔)
251, 24bnj836 34774 . . . 4 (𝜓𝑥 ∈ dom 𝑔)
2620, 25bnj1294 34831 . . 3 (𝜓 → pred(𝑥, 𝐴, 𝑅) ⊆ dom 𝑔)
272, 3, 4, 5, 6, 7, 1bnj1259 35030 . . . . . . . 8 (𝜑 → ∃𝑑𝐵 Fn 𝑑)
2827bnj1196 34808 . . . . . . 7 (𝜑 → ∃𝑑(𝑑𝐵 Fn 𝑑))
2910adantr 480 . . . . . . . 8 ((𝑑𝐵 Fn 𝑑) → ∀𝑥𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑)
30 fndm 6671 . . . . . . . . . 10 ( Fn 𝑑 → dom = 𝑑)
31 sseq2 4010 . . . . . . . . . . 11 (dom = 𝑑 → ( pred(𝑥, 𝐴, 𝑅) ⊆ dom ↔ pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑))
3231raleqbi1dv 3338 . . . . . . . . . 10 (dom = 𝑑 → (∀𝑥 ∈ dom pred(𝑥, 𝐴, 𝑅) ⊆ dom ↔ ∀𝑥𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑))
3330, 32syl 17 . . . . . . . . 9 ( Fn 𝑑 → (∀𝑥 ∈ dom pred(𝑥, 𝐴, 𝑅) ⊆ dom ↔ ∀𝑥𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑))
3433adantl 481 . . . . . . . 8 ((𝑑𝐵 Fn 𝑑) → (∀𝑥 ∈ dom pred(𝑥, 𝐴, 𝑅) ⊆ dom ↔ ∀𝑥𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑))
3529, 34mpbird 257 . . . . . . 7 ((𝑑𝐵 Fn 𝑑) → ∀𝑥 ∈ dom pred(𝑥, 𝐴, 𝑅) ⊆ dom )
3628, 35bnj593 34759 . . . . . 6 (𝜑 → ∃𝑑𝑥 ∈ dom pred(𝑥, 𝐴, 𝑅) ⊆ dom )
3736bnj937 34785 . . . . 5 (𝜑 → ∀𝑥 ∈ dom pred(𝑥, 𝐴, 𝑅) ⊆ dom )
381, 37bnj835 34773 . . . 4 (𝜓 → ∀𝑥 ∈ dom pred(𝑥, 𝐴, 𝑅) ⊆ dom )
395bnj1293 34830 . . . . . . 7 𝐷 ⊆ dom
4021, 39sstri 3993 . . . . . 6 𝐸 ⊆ dom
4140sseli 3979 . . . . 5 (𝑥𝐸𝑥 ∈ dom )
421, 41bnj836 34774 . . . 4 (𝜓𝑥 ∈ dom )
4338, 42bnj1294 34831 . . 3 (𝜓 → pred(𝑥, 𝐴, 𝑅) ⊆ dom )
4426, 43ssind 4241 . 2 (𝜓 → pred(𝑥, 𝐴, 𝑅) ⊆ (dom 𝑔 ∩ dom ))
4544, 5sseqtrrdi 4025 1 (𝜓 → pred(𝑥, 𝐴, 𝑅) ⊆ 𝐷)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1087   = wceq 1540  wcel 2108  {cab 2714  wne 2940  wral 3061  wrex 3070  {crab 3436  cin 3950  wss 3951  cop 4632   class class class wbr 5143  dom cdm 5685  cres 5687   Fn wfn 6556  cfv 6561  w-bnj17 34700   predc-bnj14 34702   FrSe w-bnj15 34706
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-12 2177  ax-ext 2708
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2065  df-clab 2715  df-cleq 2729  df-clel 2816  df-ral 3062  df-rex 3071  df-rab 3437  df-v 3482  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-br 5144  df-opab 5206  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-res 5697  df-iota 6514  df-fun 6563  df-fn 6564  df-fv 6569  df-bnj17 34701
This theorem is referenced by:  bnj1280  35034
  Copyright terms: Public domain W3C validator