Step | Hyp | Ref
| Expression |
1 | | bnj1450.19 |
. . . . . . . . 9
⊢ (𝜁 ↔ (𝜃 ∧ 𝑧 ∈ trCl(𝑥, 𝐴, 𝑅))) |
2 | 1 | simprbi 492 |
. . . . . . . 8
⊢ (𝜁 → 𝑧 ∈ trCl(𝑥, 𝐴, 𝑅)) |
3 | | bnj1450.17 |
. . . . . . . . . 10
⊢ (𝜃 ↔ (𝜒 ∧ 𝑧 ∈ 𝐸)) |
4 | | bnj1450.15 |
. . . . . . . . . . 11
⊢ (𝜒 → 𝑃 Fn trCl(𝑥, 𝐴, 𝑅)) |
5 | | fndm 6223 |
. . . . . . . . . . 11
⊢ (𝑃 Fn trCl(𝑥, 𝐴, 𝑅) → dom 𝑃 = trCl(𝑥, 𝐴, 𝑅)) |
6 | 4, 5 | syl 17 |
. . . . . . . . . 10
⊢ (𝜒 → dom 𝑃 = trCl(𝑥, 𝐴, 𝑅)) |
7 | 3, 6 | bnj832 31363 |
. . . . . . . . 9
⊢ (𝜃 → dom 𝑃 = trCl(𝑥, 𝐴, 𝑅)) |
8 | 1, 7 | bnj832 31363 |
. . . . . . . 8
⊢ (𝜁 → dom 𝑃 = trCl(𝑥, 𝐴, 𝑅)) |
9 | 2, 8 | eleqtrrd 2909 |
. . . . . . 7
⊢ (𝜁 → 𝑧 ∈ dom 𝑃) |
10 | | bnj1450.10 |
. . . . . . . 8
⊢ 𝑃 = ∪
𝐻 |
11 | 10 | dmeqi 5557 |
. . . . . . 7
⊢ dom 𝑃 = dom ∪ 𝐻 |
12 | 9, 11 | syl6eleq 2916 |
. . . . . 6
⊢ (𝜁 → 𝑧 ∈ dom ∪
𝐻) |
13 | | bnj1450.9 |
. . . . . . . 8
⊢ 𝐻 = {𝑓 ∣ ∃𝑦 ∈ pred (𝑥, 𝐴, 𝑅)𝜏′} |
14 | 13 | bnj1317 31427 |
. . . . . . 7
⊢ (𝑤 ∈ 𝐻 → ∀𝑓 𝑤 ∈ 𝐻) |
15 | 14 | bnj1400 31441 |
. . . . . 6
⊢ dom ∪ 𝐻 =
∪ 𝑓 ∈ 𝐻 dom 𝑓 |
16 | 12, 15 | syl6eleq 2916 |
. . . . 5
⊢ (𝜁 → 𝑧 ∈ ∪
𝑓 ∈ 𝐻 dom 𝑓) |
17 | 16 | bnj1405 31442 |
. . . 4
⊢ (𝜁 → ∃𝑓 ∈ 𝐻 𝑧 ∈ dom 𝑓) |
18 | | bnj1450.20 |
. . . 4
⊢ (𝜌 ↔ (𝜁 ∧ 𝑓 ∈ 𝐻 ∧ 𝑧 ∈ dom 𝑓)) |
19 | | bnj1450.1 |
. . . . 5
⊢ 𝐵 = {𝑑 ∣ (𝑑 ⊆ 𝐴 ∧ ∀𝑥 ∈ 𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑)} |
20 | | bnj1450.2 |
. . . . 5
⊢ 𝑌 = 〈𝑥, (𝑓 ↾ pred(𝑥, 𝐴, 𝑅))〉 |
21 | | bnj1450.3 |
. . . . 5
⊢ 𝐶 = {𝑓 ∣ ∃𝑑 ∈ 𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥 ∈ 𝑑 (𝑓‘𝑥) = (𝐺‘𝑌))} |
22 | | bnj1450.4 |
. . . . 5
⊢ (𝜏 ↔ (𝑓 ∈ 𝐶 ∧ dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅)))) |
23 | | bnj1450.5 |
. . . . 5
⊢ 𝐷 = {𝑥 ∈ 𝐴 ∣ ¬ ∃𝑓𝜏} |
24 | | bnj1450.6 |
. . . . 5
⊢ (𝜓 ↔ (𝑅 FrSe 𝐴 ∧ 𝐷 ≠ ∅)) |
25 | | bnj1450.7 |
. . . . 5
⊢ (𝜒 ↔ (𝜓 ∧ 𝑥 ∈ 𝐷 ∧ ∀𝑦 ∈ 𝐷 ¬ 𝑦𝑅𝑥)) |
26 | | bnj1450.8 |
. . . . 5
⊢ (𝜏′ ↔ [𝑦 / 𝑥]𝜏) |
27 | | bnj1450.11 |
. . . . 5
⊢ 𝑍 = 〈𝑥, (𝑃 ↾ pred(𝑥, 𝐴, 𝑅))〉 |
28 | | bnj1450.12 |
. . . . 5
⊢ 𝑄 = (𝑃 ∪ {〈𝑥, (𝐺‘𝑍)〉}) |
29 | | bnj1450.13 |
. . . . 5
⊢ 𝑊 = 〈𝑧, (𝑄 ↾ pred(𝑧, 𝐴, 𝑅))〉 |
30 | | bnj1450.14 |
. . . . 5
⊢ 𝐸 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅)) |
31 | | bnj1450.16 |
. . . . 5
⊢ (𝜒 → 𝑄 Fn ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅))) |
32 | | bnj1450.18 |
. . . . 5
⊢ (𝜂 ↔ (𝜃 ∧ 𝑧 ∈ {𝑥})) |
33 | 19, 20, 21, 22, 23, 24, 25, 26, 13, 10, 27, 28, 29, 30, 4, 31, 3, 32, 1 | bnj1449 31651 |
. . . 4
⊢ (𝜁 → ∀𝑓𝜁) |
34 | 17, 18, 33 | bnj1521 31456 |
. . 3
⊢ (𝜁 → ∃𝑓𝜌) |
35 | 13 | bnj1436 31445 |
. . . . . . . . . 10
⊢ (𝑓 ∈ 𝐻 → ∃𝑦 ∈ pred (𝑥, 𝐴, 𝑅)𝜏′) |
36 | 18, 35 | bnj836 31365 |
. . . . . . . . 9
⊢ (𝜌 → ∃𝑦 ∈ pred (𝑥, 𝐴, 𝑅)𝜏′) |
37 | 19, 20, 21, 22, 26 | bnj1373 31633 |
. . . . . . . . . 10
⊢ (𝜏′ ↔ (𝑓 ∈ 𝐶 ∧ dom 𝑓 = ({𝑦} ∪ trCl(𝑦, 𝐴, 𝑅)))) |
38 | 37 | rexbii 3251 |
. . . . . . . . 9
⊢
(∃𝑦 ∈
pred (𝑥, 𝐴, 𝑅)𝜏′ ↔ ∃𝑦 ∈ pred (𝑥, 𝐴, 𝑅)(𝑓 ∈ 𝐶 ∧ dom 𝑓 = ({𝑦} ∪ trCl(𝑦, 𝐴, 𝑅)))) |
39 | 36, 38 | sylib 210 |
. . . . . . . 8
⊢ (𝜌 → ∃𝑦 ∈ pred (𝑥, 𝐴, 𝑅)(𝑓 ∈ 𝐶 ∧ dom 𝑓 = ({𝑦} ∪ trCl(𝑦, 𝐴, 𝑅)))) |
40 | 39 | bnj1196 31400 |
. . . . . . 7
⊢ (𝜌 → ∃𝑦(𝑦 ∈ pred(𝑥, 𝐴, 𝑅) ∧ (𝑓 ∈ 𝐶 ∧ dom 𝑓 = ({𝑦} ∪ trCl(𝑦, 𝐴, 𝑅))))) |
41 | | 3anass 1120 |
. . . . . . 7
⊢ ((𝑦 ∈ pred(𝑥, 𝐴, 𝑅) ∧ 𝑓 ∈ 𝐶 ∧ dom 𝑓 = ({𝑦} ∪ trCl(𝑦, 𝐴, 𝑅))) ↔ (𝑦 ∈ pred(𝑥, 𝐴, 𝑅) ∧ (𝑓 ∈ 𝐶 ∧ dom 𝑓 = ({𝑦} ∪ trCl(𝑦, 𝐴, 𝑅))))) |
42 | 40, 41 | bnj1198 31401 |
. . . . . 6
⊢ (𝜌 → ∃𝑦(𝑦 ∈ pred(𝑥, 𝐴, 𝑅) ∧ 𝑓 ∈ 𝐶 ∧ dom 𝑓 = ({𝑦} ∪ trCl(𝑦, 𝐴, 𝑅)))) |
43 | | bnj1450.21 |
. . . . . . 7
⊢ (𝜎 ↔ (𝜌 ∧ 𝑦 ∈ pred(𝑥, 𝐴, 𝑅) ∧ 𝑓 ∈ 𝐶 ∧ dom 𝑓 = ({𝑦} ∪ trCl(𝑦, 𝐴, 𝑅)))) |
44 | | bnj252 31307 |
. . . . . . 7
⊢ ((𝜌 ∧ 𝑦 ∈ pred(𝑥, 𝐴, 𝑅) ∧ 𝑓 ∈ 𝐶 ∧ dom 𝑓 = ({𝑦} ∪ trCl(𝑦, 𝐴, 𝑅))) ↔ (𝜌 ∧ (𝑦 ∈ pred(𝑥, 𝐴, 𝑅) ∧ 𝑓 ∈ 𝐶 ∧ dom 𝑓 = ({𝑦} ∪ trCl(𝑦, 𝐴, 𝑅))))) |
45 | 43, 44 | bitri 267 |
. . . . . 6
⊢ (𝜎 ↔ (𝜌 ∧ (𝑦 ∈ pred(𝑥, 𝐴, 𝑅) ∧ 𝑓 ∈ 𝐶 ∧ dom 𝑓 = ({𝑦} ∪ trCl(𝑦, 𝐴, 𝑅))))) |
46 | 19, 20, 21, 22, 23, 24, 25, 26, 13, 10, 27, 28, 29, 30, 4, 31, 3, 32, 1, 18 | bnj1444 31646 |
. . . . . 6
⊢ (𝜌 → ∀𝑦𝜌) |
47 | 42, 45, 46 | bnj1340 31429 |
. . . . 5
⊢ (𝜌 → ∃𝑦𝜎) |
48 | 21 | bnj1436 31445 |
. . . . . . . . . . 11
⊢ (𝑓 ∈ 𝐶 → ∃𝑑 ∈ 𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥 ∈ 𝑑 (𝑓‘𝑥) = (𝐺‘𝑌))) |
49 | 43, 48 | bnj771 31369 |
. . . . . . . . . 10
⊢ (𝜎 → ∃𝑑 ∈ 𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥 ∈ 𝑑 (𝑓‘𝑥) = (𝐺‘𝑌))) |
50 | 49 | bnj1196 31400 |
. . . . . . . . 9
⊢ (𝜎 → ∃𝑑(𝑑 ∈ 𝐵 ∧ (𝑓 Fn 𝑑 ∧ ∀𝑥 ∈ 𝑑 (𝑓‘𝑥) = (𝐺‘𝑌)))) |
51 | | 3anass 1120 |
. . . . . . . . 9
⊢ ((𝑑 ∈ 𝐵 ∧ 𝑓 Fn 𝑑 ∧ ∀𝑥 ∈ 𝑑 (𝑓‘𝑥) = (𝐺‘𝑌)) ↔ (𝑑 ∈ 𝐵 ∧ (𝑓 Fn 𝑑 ∧ ∀𝑥 ∈ 𝑑 (𝑓‘𝑥) = (𝐺‘𝑌)))) |
52 | 50, 51 | bnj1198 31401 |
. . . . . . . 8
⊢ (𝜎 → ∃𝑑(𝑑 ∈ 𝐵 ∧ 𝑓 Fn 𝑑 ∧ ∀𝑥 ∈ 𝑑 (𝑓‘𝑥) = (𝐺‘𝑌))) |
53 | | bnj1450.22 |
. . . . . . . . 9
⊢ (𝜑 ↔ (𝜎 ∧ 𝑑 ∈ 𝐵 ∧ 𝑓 Fn 𝑑 ∧ ∀𝑥 ∈ 𝑑 (𝑓‘𝑥) = (𝐺‘𝑌))) |
54 | | bnj252 31307 |
. . . . . . . . 9
⊢ ((𝜎 ∧ 𝑑 ∈ 𝐵 ∧ 𝑓 Fn 𝑑 ∧ ∀𝑥 ∈ 𝑑 (𝑓‘𝑥) = (𝐺‘𝑌)) ↔ (𝜎 ∧ (𝑑 ∈ 𝐵 ∧ 𝑓 Fn 𝑑 ∧ ∀𝑥 ∈ 𝑑 (𝑓‘𝑥) = (𝐺‘𝑌)))) |
55 | 53, 54 | bitri 267 |
. . . . . . . 8
⊢ (𝜑 ↔ (𝜎 ∧ (𝑑 ∈ 𝐵 ∧ 𝑓 Fn 𝑑 ∧ ∀𝑥 ∈ 𝑑 (𝑓‘𝑥) = (𝐺‘𝑌)))) |
56 | | bnj1450.23 |
. . . . . . . . 9
⊢ 𝑋 = 〈𝑧, (𝑓 ↾ pred(𝑧, 𝐴, 𝑅))〉 |
57 | 19, 20, 21, 22, 23, 24, 25, 26, 13, 10, 27, 28, 29, 30, 4, 31, 3, 32, 1, 18, 43, 53, 56 | bnj1445 31647 |
. . . . . . . 8
⊢ (𝜎 → ∀𝑑𝜎) |
58 | 52, 55, 57 | bnj1340 31429 |
. . . . . . 7
⊢ (𝜎 → ∃𝑑𝜑) |
59 | 53 | bnj1254 31415 |
. . . . . . . . . 10
⊢ (𝜑 → ∀𝑥 ∈ 𝑑 (𝑓‘𝑥) = (𝐺‘𝑌)) |
60 | | fveq2 6433 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝑧 → (𝑓‘𝑥) = (𝑓‘𝑧)) |
61 | | id 22 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 = 𝑧 → 𝑥 = 𝑧) |
62 | | bnj602 31520 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 = 𝑧 → pred(𝑥, 𝐴, 𝑅) = pred(𝑧, 𝐴, 𝑅)) |
63 | 62 | reseq2d 5629 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 = 𝑧 → (𝑓 ↾ pred(𝑥, 𝐴, 𝑅)) = (𝑓 ↾ pred(𝑧, 𝐴, 𝑅))) |
64 | 61, 63 | opeq12d 4631 |
. . . . . . . . . . . . . 14
⊢ (𝑥 = 𝑧 → 〈𝑥, (𝑓 ↾ pred(𝑥, 𝐴, 𝑅))〉 = 〈𝑧, (𝑓 ↾ pred(𝑧, 𝐴, 𝑅))〉) |
65 | 64, 20, 56 | 3eqtr4g 2886 |
. . . . . . . . . . . . 13
⊢ (𝑥 = 𝑧 → 𝑌 = 𝑋) |
66 | 65 | fveq2d 6437 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝑧 → (𝐺‘𝑌) = (𝐺‘𝑋)) |
67 | 60, 66 | eqeq12d 2840 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝑧 → ((𝑓‘𝑥) = (𝐺‘𝑌) ↔ (𝑓‘𝑧) = (𝐺‘𝑋))) |
68 | 67 | cbvralv 3383 |
. . . . . . . . . 10
⊢
(∀𝑥 ∈
𝑑 (𝑓‘𝑥) = (𝐺‘𝑌) ↔ ∀𝑧 ∈ 𝑑 (𝑓‘𝑧) = (𝐺‘𝑋)) |
69 | 59, 68 | sylib 210 |
. . . . . . . . 9
⊢ (𝜑 → ∀𝑧 ∈ 𝑑 (𝑓‘𝑧) = (𝐺‘𝑋)) |
70 | 18 | simp3bi 1181 |
. . . . . . . . . . . 12
⊢ (𝜌 → 𝑧 ∈ dom 𝑓) |
71 | 43, 70 | bnj769 31367 |
. . . . . . . . . . 11
⊢ (𝜎 → 𝑧 ∈ dom 𝑓) |
72 | 53, 71 | bnj769 31367 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑧 ∈ dom 𝑓) |
73 | | fndm 6223 |
. . . . . . . . . . 11
⊢ (𝑓 Fn 𝑑 → dom 𝑓 = 𝑑) |
74 | 53, 73 | bnj771 31369 |
. . . . . . . . . 10
⊢ (𝜑 → dom 𝑓 = 𝑑) |
75 | 72, 74 | eleqtrd 2908 |
. . . . . . . . 9
⊢ (𝜑 → 𝑧 ∈ 𝑑) |
76 | 69, 75 | bnj1294 31423 |
. . . . . . . 8
⊢ (𝜑 → (𝑓‘𝑧) = (𝐺‘𝑋)) |
77 | 31 | bnj930 31375 |
. . . . . . . . . . . . . 14
⊢ (𝜒 → Fun 𝑄) |
78 | 3, 77 | bnj832 31363 |
. . . . . . . . . . . . 13
⊢ (𝜃 → Fun 𝑄) |
79 | 1, 78 | bnj832 31363 |
. . . . . . . . . . . 12
⊢ (𝜁 → Fun 𝑄) |
80 | 18, 79 | bnj835 31364 |
. . . . . . . . . . 11
⊢ (𝜌 → Fun 𝑄) |
81 | 43, 80 | bnj769 31367 |
. . . . . . . . . 10
⊢ (𝜎 → Fun 𝑄) |
82 | 53, 81 | bnj769 31367 |
. . . . . . . . 9
⊢ (𝜑 → Fun 𝑄) |
83 | 18 | simp2bi 1180 |
. . . . . . . . . . . 12
⊢ (𝜌 → 𝑓 ∈ 𝐻) |
84 | 43, 83 | bnj769 31367 |
. . . . . . . . . . 11
⊢ (𝜎 → 𝑓 ∈ 𝐻) |
85 | 53, 84 | bnj769 31367 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑓 ∈ 𝐻) |
86 | | elssuni 4689 |
. . . . . . . . . . 11
⊢ (𝑓 ∈ 𝐻 → 𝑓 ⊆ ∪ 𝐻) |
87 | 86, 10 | syl6sseqr 3877 |
. . . . . . . . . 10
⊢ (𝑓 ∈ 𝐻 → 𝑓 ⊆ 𝑃) |
88 | | ssun3 4005 |
. . . . . . . . . . 11
⊢ (𝑓 ⊆ 𝑃 → 𝑓 ⊆ (𝑃 ∪ {〈𝑥, (𝐺‘𝑍)〉})) |
89 | 88, 28 | syl6sseqr 3877 |
. . . . . . . . . 10
⊢ (𝑓 ⊆ 𝑃 → 𝑓 ⊆ 𝑄) |
90 | 85, 87, 89 | 3syl 18 |
. . . . . . . . 9
⊢ (𝜑 → 𝑓 ⊆ 𝑄) |
91 | 82, 90, 72 | bnj1502 31453 |
. . . . . . . 8
⊢ (𝜑 → (𝑄‘𝑧) = (𝑓‘𝑧)) |
92 | 19 | bnj1517 31455 |
. . . . . . . . . . . . . . . 16
⊢ (𝑑 ∈ 𝐵 → ∀𝑥 ∈ 𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑) |
93 | 53, 92 | bnj770 31368 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → ∀𝑥 ∈ 𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑) |
94 | 62 | sseq1d 3857 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 = 𝑧 → ( pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑 ↔ pred(𝑧, 𝐴, 𝑅) ⊆ 𝑑)) |
95 | 94 | cbvralv 3383 |
. . . . . . . . . . . . . . 15
⊢
(∀𝑥 ∈
𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑 ↔ ∀𝑧 ∈ 𝑑 pred(𝑧, 𝐴, 𝑅) ⊆ 𝑑) |
96 | 93, 95 | sylib 210 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → ∀𝑧 ∈ 𝑑 pred(𝑧, 𝐴, 𝑅) ⊆ 𝑑) |
97 | 96, 75 | bnj1294 31423 |
. . . . . . . . . . . . 13
⊢ (𝜑 → pred(𝑧, 𝐴, 𝑅) ⊆ 𝑑) |
98 | 97, 74 | sseqtr4d 3867 |
. . . . . . . . . . . 12
⊢ (𝜑 → pred(𝑧, 𝐴, 𝑅) ⊆ dom 𝑓) |
99 | 82, 90, 98 | bnj1503 31454 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑄 ↾ pred(𝑧, 𝐴, 𝑅)) = (𝑓 ↾ pred(𝑧, 𝐴, 𝑅))) |
100 | 99 | opeq2d 4630 |
. . . . . . . . . 10
⊢ (𝜑 → 〈𝑧, (𝑄 ↾ pred(𝑧, 𝐴, 𝑅))〉 = 〈𝑧, (𝑓 ↾ pred(𝑧, 𝐴, 𝑅))〉) |
101 | 100, 29, 56 | 3eqtr4g 2886 |
. . . . . . . . 9
⊢ (𝜑 → 𝑊 = 𝑋) |
102 | 101 | fveq2d 6437 |
. . . . . . . 8
⊢ (𝜑 → (𝐺‘𝑊) = (𝐺‘𝑋)) |
103 | 76, 91, 102 | 3eqtr4d 2871 |
. . . . . . 7
⊢ (𝜑 → (𝑄‘𝑧) = (𝐺‘𝑊)) |
104 | 58, 103 | bnj593 31350 |
. . . . . 6
⊢ (𝜎 → ∃𝑑(𝑄‘𝑧) = (𝐺‘𝑊)) |
105 | 19, 20, 21, 22, 23, 24, 25, 26, 13, 10, 27, 28, 29 | bnj1446 31648 |
. . . . . 6
⊢ ((𝑄‘𝑧) = (𝐺‘𝑊) → ∀𝑑(𝑄‘𝑧) = (𝐺‘𝑊)) |
106 | 104, 105 | bnj1397 31440 |
. . . . 5
⊢ (𝜎 → (𝑄‘𝑧) = (𝐺‘𝑊)) |
107 | 47, 106 | bnj593 31350 |
. . . 4
⊢ (𝜌 → ∃𝑦(𝑄‘𝑧) = (𝐺‘𝑊)) |
108 | 19, 20, 21, 22, 23, 24, 25, 26, 13, 10, 27, 28, 29 | bnj1447 31649 |
. . . 4
⊢ ((𝑄‘𝑧) = (𝐺‘𝑊) → ∀𝑦(𝑄‘𝑧) = (𝐺‘𝑊)) |
109 | 107, 108 | bnj1397 31440 |
. . 3
⊢ (𝜌 → (𝑄‘𝑧) = (𝐺‘𝑊)) |
110 | 34, 109 | bnj593 31350 |
. 2
⊢ (𝜁 → ∃𝑓(𝑄‘𝑧) = (𝐺‘𝑊)) |
111 | 19, 20, 21, 22, 23, 24, 25, 26, 13, 10, 27, 28, 29 | bnj1448 31650 |
. 2
⊢ ((𝑄‘𝑧) = (𝐺‘𝑊) → ∀𝑓(𝑄‘𝑧) = (𝐺‘𝑊)) |
112 | 110, 111 | bnj1397 31440 |
1
⊢ (𝜁 → (𝑄‘𝑧) = (𝐺‘𝑊)) |