Step | Hyp | Ref
| Expression |
1 | | bnj1450.19 |
. . . . . . . . 9
⊢ (𝜁 ↔ (𝜃 ∧ 𝑧 ∈ trCl(𝑥, 𝐴, 𝑅))) |
2 | 1 | simprbi 497 |
. . . . . . . 8
⊢ (𝜁 → 𝑧 ∈ trCl(𝑥, 𝐴, 𝑅)) |
3 | | bnj1450.17 |
. . . . . . . . . 10
⊢ (𝜃 ↔ (𝜒 ∧ 𝑧 ∈ 𝐸)) |
4 | | bnj1450.15 |
. . . . . . . . . . 11
⊢ (𝜒 → 𝑃 Fn trCl(𝑥, 𝐴, 𝑅)) |
5 | 4 | fndmd 6538 |
. . . . . . . . . 10
⊢ (𝜒 → dom 𝑃 = trCl(𝑥, 𝐴, 𝑅)) |
6 | 3, 5 | bnj832 32738 |
. . . . . . . . 9
⊢ (𝜃 → dom 𝑃 = trCl(𝑥, 𝐴, 𝑅)) |
7 | 1, 6 | bnj832 32738 |
. . . . . . . 8
⊢ (𝜁 → dom 𝑃 = trCl(𝑥, 𝐴, 𝑅)) |
8 | 2, 7 | eleqtrrd 2842 |
. . . . . . 7
⊢ (𝜁 → 𝑧 ∈ dom 𝑃) |
9 | | bnj1450.10 |
. . . . . . . 8
⊢ 𝑃 = ∪
𝐻 |
10 | 9 | dmeqi 5813 |
. . . . . . 7
⊢ dom 𝑃 = dom ∪ 𝐻 |
11 | 8, 10 | eleqtrdi 2849 |
. . . . . 6
⊢ (𝜁 → 𝑧 ∈ dom ∪
𝐻) |
12 | | bnj1450.9 |
. . . . . . . 8
⊢ 𝐻 = {𝑓 ∣ ∃𝑦 ∈ pred (𝑥, 𝐴, 𝑅)𝜏′} |
13 | 12 | bnj1317 32801 |
. . . . . . 7
⊢ (𝑤 ∈ 𝐻 → ∀𝑓 𝑤 ∈ 𝐻) |
14 | 13 | bnj1400 32815 |
. . . . . 6
⊢ dom ∪ 𝐻 =
∪ 𝑓 ∈ 𝐻 dom 𝑓 |
15 | 11, 14 | eleqtrdi 2849 |
. . . . 5
⊢ (𝜁 → 𝑧 ∈ ∪
𝑓 ∈ 𝐻 dom 𝑓) |
16 | 15 | bnj1405 32816 |
. . . 4
⊢ (𝜁 → ∃𝑓 ∈ 𝐻 𝑧 ∈ dom 𝑓) |
17 | | bnj1450.20 |
. . . 4
⊢ (𝜌 ↔ (𝜁 ∧ 𝑓 ∈ 𝐻 ∧ 𝑧 ∈ dom 𝑓)) |
18 | | bnj1450.1 |
. . . . 5
⊢ 𝐵 = {𝑑 ∣ (𝑑 ⊆ 𝐴 ∧ ∀𝑥 ∈ 𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑)} |
19 | | bnj1450.2 |
. . . . 5
⊢ 𝑌 = 〈𝑥, (𝑓 ↾ pred(𝑥, 𝐴, 𝑅))〉 |
20 | | bnj1450.3 |
. . . . 5
⊢ 𝐶 = {𝑓 ∣ ∃𝑑 ∈ 𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥 ∈ 𝑑 (𝑓‘𝑥) = (𝐺‘𝑌))} |
21 | | bnj1450.4 |
. . . . 5
⊢ (𝜏 ↔ (𝑓 ∈ 𝐶 ∧ dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅)))) |
22 | | bnj1450.5 |
. . . . 5
⊢ 𝐷 = {𝑥 ∈ 𝐴 ∣ ¬ ∃𝑓𝜏} |
23 | | bnj1450.6 |
. . . . 5
⊢ (𝜓 ↔ (𝑅 FrSe 𝐴 ∧ 𝐷 ≠ ∅)) |
24 | | bnj1450.7 |
. . . . 5
⊢ (𝜒 ↔ (𝜓 ∧ 𝑥 ∈ 𝐷 ∧ ∀𝑦 ∈ 𝐷 ¬ 𝑦𝑅𝑥)) |
25 | | bnj1450.8 |
. . . . 5
⊢ (𝜏′ ↔ [𝑦 / 𝑥]𝜏) |
26 | | bnj1450.11 |
. . . . 5
⊢ 𝑍 = 〈𝑥, (𝑃 ↾ pred(𝑥, 𝐴, 𝑅))〉 |
27 | | bnj1450.12 |
. . . . 5
⊢ 𝑄 = (𝑃 ∪ {〈𝑥, (𝐺‘𝑍)〉}) |
28 | | bnj1450.13 |
. . . . 5
⊢ 𝑊 = 〈𝑧, (𝑄 ↾ pred(𝑧, 𝐴, 𝑅))〉 |
29 | | bnj1450.14 |
. . . . 5
⊢ 𝐸 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅)) |
30 | | bnj1450.16 |
. . . . 5
⊢ (𝜒 → 𝑄 Fn ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅))) |
31 | | bnj1450.18 |
. . . . 5
⊢ (𝜂 ↔ (𝜃 ∧ 𝑧 ∈ {𝑥})) |
32 | 18, 19, 20, 21, 22, 23, 24, 25, 12, 9, 26, 27, 28, 29, 4, 30, 3, 31, 1 | bnj1449 33028 |
. . . 4
⊢ (𝜁 → ∀𝑓𝜁) |
33 | 16, 17, 32 | bnj1521 32831 |
. . 3
⊢ (𝜁 → ∃𝑓𝜌) |
34 | 12 | bnj1436 32819 |
. . . . . . . . . 10
⊢ (𝑓 ∈ 𝐻 → ∃𝑦 ∈ pred (𝑥, 𝐴, 𝑅)𝜏′) |
35 | 17, 34 | bnj836 32740 |
. . . . . . . . 9
⊢ (𝜌 → ∃𝑦 ∈ pred (𝑥, 𝐴, 𝑅)𝜏′) |
36 | 18, 19, 20, 21, 25 | bnj1373 33010 |
. . . . . . . . . 10
⊢ (𝜏′ ↔ (𝑓 ∈ 𝐶 ∧ dom 𝑓 = ({𝑦} ∪ trCl(𝑦, 𝐴, 𝑅)))) |
37 | 36 | rexbii 3181 |
. . . . . . . . 9
⊢
(∃𝑦 ∈
pred (𝑥, 𝐴, 𝑅)𝜏′ ↔ ∃𝑦 ∈ pred (𝑥, 𝐴, 𝑅)(𝑓 ∈ 𝐶 ∧ dom 𝑓 = ({𝑦} ∪ trCl(𝑦, 𝐴, 𝑅)))) |
38 | 35, 37 | sylib 217 |
. . . . . . . 8
⊢ (𝜌 → ∃𝑦 ∈ pred (𝑥, 𝐴, 𝑅)(𝑓 ∈ 𝐶 ∧ dom 𝑓 = ({𝑦} ∪ trCl(𝑦, 𝐴, 𝑅)))) |
39 | 38 | bnj1196 32774 |
. . . . . . 7
⊢ (𝜌 → ∃𝑦(𝑦 ∈ pred(𝑥, 𝐴, 𝑅) ∧ (𝑓 ∈ 𝐶 ∧ dom 𝑓 = ({𝑦} ∪ trCl(𝑦, 𝐴, 𝑅))))) |
40 | | 3anass 1094 |
. . . . . . 7
⊢ ((𝑦 ∈ pred(𝑥, 𝐴, 𝑅) ∧ 𝑓 ∈ 𝐶 ∧ dom 𝑓 = ({𝑦} ∪ trCl(𝑦, 𝐴, 𝑅))) ↔ (𝑦 ∈ pred(𝑥, 𝐴, 𝑅) ∧ (𝑓 ∈ 𝐶 ∧ dom 𝑓 = ({𝑦} ∪ trCl(𝑦, 𝐴, 𝑅))))) |
41 | 39, 40 | bnj1198 32775 |
. . . . . 6
⊢ (𝜌 → ∃𝑦(𝑦 ∈ pred(𝑥, 𝐴, 𝑅) ∧ 𝑓 ∈ 𝐶 ∧ dom 𝑓 = ({𝑦} ∪ trCl(𝑦, 𝐴, 𝑅)))) |
42 | | bnj1450.21 |
. . . . . . 7
⊢ (𝜎 ↔ (𝜌 ∧ 𝑦 ∈ pred(𝑥, 𝐴, 𝑅) ∧ 𝑓 ∈ 𝐶 ∧ dom 𝑓 = ({𝑦} ∪ trCl(𝑦, 𝐴, 𝑅)))) |
43 | | bnj252 32682 |
. . . . . . 7
⊢ ((𝜌 ∧ 𝑦 ∈ pred(𝑥, 𝐴, 𝑅) ∧ 𝑓 ∈ 𝐶 ∧ dom 𝑓 = ({𝑦} ∪ trCl(𝑦, 𝐴, 𝑅))) ↔ (𝜌 ∧ (𝑦 ∈ pred(𝑥, 𝐴, 𝑅) ∧ 𝑓 ∈ 𝐶 ∧ dom 𝑓 = ({𝑦} ∪ trCl(𝑦, 𝐴, 𝑅))))) |
44 | 42, 43 | bitri 274 |
. . . . . 6
⊢ (𝜎 ↔ (𝜌 ∧ (𝑦 ∈ pred(𝑥, 𝐴, 𝑅) ∧ 𝑓 ∈ 𝐶 ∧ dom 𝑓 = ({𝑦} ∪ trCl(𝑦, 𝐴, 𝑅))))) |
45 | 18, 19, 20, 21, 22, 23, 24, 25, 12, 9, 26, 27, 28, 29, 4, 30, 3, 31, 1, 17 | bnj1444 33023 |
. . . . . 6
⊢ (𝜌 → ∀𝑦𝜌) |
46 | 41, 44, 45 | bnj1340 32803 |
. . . . 5
⊢ (𝜌 → ∃𝑦𝜎) |
47 | 20 | bnj1436 32819 |
. . . . . . . . . . 11
⊢ (𝑓 ∈ 𝐶 → ∃𝑑 ∈ 𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥 ∈ 𝑑 (𝑓‘𝑥) = (𝐺‘𝑌))) |
48 | 42, 47 | bnj771 32744 |
. . . . . . . . . 10
⊢ (𝜎 → ∃𝑑 ∈ 𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥 ∈ 𝑑 (𝑓‘𝑥) = (𝐺‘𝑌))) |
49 | 48 | bnj1196 32774 |
. . . . . . . . 9
⊢ (𝜎 → ∃𝑑(𝑑 ∈ 𝐵 ∧ (𝑓 Fn 𝑑 ∧ ∀𝑥 ∈ 𝑑 (𝑓‘𝑥) = (𝐺‘𝑌)))) |
50 | | 3anass 1094 |
. . . . . . . . 9
⊢ ((𝑑 ∈ 𝐵 ∧ 𝑓 Fn 𝑑 ∧ ∀𝑥 ∈ 𝑑 (𝑓‘𝑥) = (𝐺‘𝑌)) ↔ (𝑑 ∈ 𝐵 ∧ (𝑓 Fn 𝑑 ∧ ∀𝑥 ∈ 𝑑 (𝑓‘𝑥) = (𝐺‘𝑌)))) |
51 | 49, 50 | bnj1198 32775 |
. . . . . . . 8
⊢ (𝜎 → ∃𝑑(𝑑 ∈ 𝐵 ∧ 𝑓 Fn 𝑑 ∧ ∀𝑥 ∈ 𝑑 (𝑓‘𝑥) = (𝐺‘𝑌))) |
52 | | bnj1450.22 |
. . . . . . . . 9
⊢ (𝜑 ↔ (𝜎 ∧ 𝑑 ∈ 𝐵 ∧ 𝑓 Fn 𝑑 ∧ ∀𝑥 ∈ 𝑑 (𝑓‘𝑥) = (𝐺‘𝑌))) |
53 | | bnj252 32682 |
. . . . . . . . 9
⊢ ((𝜎 ∧ 𝑑 ∈ 𝐵 ∧ 𝑓 Fn 𝑑 ∧ ∀𝑥 ∈ 𝑑 (𝑓‘𝑥) = (𝐺‘𝑌)) ↔ (𝜎 ∧ (𝑑 ∈ 𝐵 ∧ 𝑓 Fn 𝑑 ∧ ∀𝑥 ∈ 𝑑 (𝑓‘𝑥) = (𝐺‘𝑌)))) |
54 | 52, 53 | bitri 274 |
. . . . . . . 8
⊢ (𝜑 ↔ (𝜎 ∧ (𝑑 ∈ 𝐵 ∧ 𝑓 Fn 𝑑 ∧ ∀𝑥 ∈ 𝑑 (𝑓‘𝑥) = (𝐺‘𝑌)))) |
55 | | bnj1450.23 |
. . . . . . . . 9
⊢ 𝑋 = 〈𝑧, (𝑓 ↾ pred(𝑧, 𝐴, 𝑅))〉 |
56 | 18, 19, 20, 21, 22, 23, 24, 25, 12, 9, 26, 27, 28, 29, 4, 30, 3, 31, 1, 17, 42, 52, 55 | bnj1445 33024 |
. . . . . . . 8
⊢ (𝜎 → ∀𝑑𝜎) |
57 | 51, 54, 56 | bnj1340 32803 |
. . . . . . 7
⊢ (𝜎 → ∃𝑑𝜑) |
58 | | fveq2 6774 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑧 → (𝑓‘𝑥) = (𝑓‘𝑧)) |
59 | | id 22 |
. . . . . . . . . . . . 13
⊢ (𝑥 = 𝑧 → 𝑥 = 𝑧) |
60 | | bnj602 32895 |
. . . . . . . . . . . . . 14
⊢ (𝑥 = 𝑧 → pred(𝑥, 𝐴, 𝑅) = pred(𝑧, 𝐴, 𝑅)) |
61 | 60 | reseq2d 5891 |
. . . . . . . . . . . . 13
⊢ (𝑥 = 𝑧 → (𝑓 ↾ pred(𝑥, 𝐴, 𝑅)) = (𝑓 ↾ pred(𝑧, 𝐴, 𝑅))) |
62 | 59, 61 | opeq12d 4812 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝑧 → 〈𝑥, (𝑓 ↾ pred(𝑥, 𝐴, 𝑅))〉 = 〈𝑧, (𝑓 ↾ pred(𝑧, 𝐴, 𝑅))〉) |
63 | 62, 19, 55 | 3eqtr4g 2803 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝑧 → 𝑌 = 𝑋) |
64 | 63 | fveq2d 6778 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑧 → (𝐺‘𝑌) = (𝐺‘𝑋)) |
65 | 58, 64 | eqeq12d 2754 |
. . . . . . . . 9
⊢ (𝑥 = 𝑧 → ((𝑓‘𝑥) = (𝐺‘𝑌) ↔ (𝑓‘𝑧) = (𝐺‘𝑋))) |
66 | 52 | bnj1254 32789 |
. . . . . . . . 9
⊢ (𝜑 → ∀𝑥 ∈ 𝑑 (𝑓‘𝑥) = (𝐺‘𝑌)) |
67 | 17 | simp3bi 1146 |
. . . . . . . . . . . 12
⊢ (𝜌 → 𝑧 ∈ dom 𝑓) |
68 | 42, 67 | bnj769 32742 |
. . . . . . . . . . 11
⊢ (𝜎 → 𝑧 ∈ dom 𝑓) |
69 | 52, 68 | bnj769 32742 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑧 ∈ dom 𝑓) |
70 | | fndm 6536 |
. . . . . . . . . . 11
⊢ (𝑓 Fn 𝑑 → dom 𝑓 = 𝑑) |
71 | 52, 70 | bnj771 32744 |
. . . . . . . . . 10
⊢ (𝜑 → dom 𝑓 = 𝑑) |
72 | 69, 71 | eleqtrd 2841 |
. . . . . . . . 9
⊢ (𝜑 → 𝑧 ∈ 𝑑) |
73 | 65, 66, 72 | rspcdva 3562 |
. . . . . . . 8
⊢ (𝜑 → (𝑓‘𝑧) = (𝐺‘𝑋)) |
74 | 30 | fnfund 6534 |
. . . . . . . . . . . . . 14
⊢ (𝜒 → Fun 𝑄) |
75 | 3, 74 | bnj832 32738 |
. . . . . . . . . . . . 13
⊢ (𝜃 → Fun 𝑄) |
76 | 1, 75 | bnj832 32738 |
. . . . . . . . . . . 12
⊢ (𝜁 → Fun 𝑄) |
77 | 17, 76 | bnj835 32739 |
. . . . . . . . . . 11
⊢ (𝜌 → Fun 𝑄) |
78 | 42, 77 | bnj769 32742 |
. . . . . . . . . 10
⊢ (𝜎 → Fun 𝑄) |
79 | 52, 78 | bnj769 32742 |
. . . . . . . . 9
⊢ (𝜑 → Fun 𝑄) |
80 | 17 | simp2bi 1145 |
. . . . . . . . . . . 12
⊢ (𝜌 → 𝑓 ∈ 𝐻) |
81 | 42, 80 | bnj769 32742 |
. . . . . . . . . . 11
⊢ (𝜎 → 𝑓 ∈ 𝐻) |
82 | 52, 81 | bnj769 32742 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑓 ∈ 𝐻) |
83 | | elssuni 4871 |
. . . . . . . . . . 11
⊢ (𝑓 ∈ 𝐻 → 𝑓 ⊆ ∪ 𝐻) |
84 | 83, 9 | sseqtrrdi 3972 |
. . . . . . . . . 10
⊢ (𝑓 ∈ 𝐻 → 𝑓 ⊆ 𝑃) |
85 | | ssun3 4108 |
. . . . . . . . . . 11
⊢ (𝑓 ⊆ 𝑃 → 𝑓 ⊆ (𝑃 ∪ {〈𝑥, (𝐺‘𝑍)〉})) |
86 | 85, 27 | sseqtrrdi 3972 |
. . . . . . . . . 10
⊢ (𝑓 ⊆ 𝑃 → 𝑓 ⊆ 𝑄) |
87 | 82, 84, 86 | 3syl 18 |
. . . . . . . . 9
⊢ (𝜑 → 𝑓 ⊆ 𝑄) |
88 | 79, 87, 69 | bnj1502 32828 |
. . . . . . . 8
⊢ (𝜑 → (𝑄‘𝑧) = (𝑓‘𝑧)) |
89 | 60 | sseq1d 3952 |
. . . . . . . . . . . . . 14
⊢ (𝑥 = 𝑧 → ( pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑 ↔ pred(𝑧, 𝐴, 𝑅) ⊆ 𝑑)) |
90 | 18 | bnj1517 32830 |
. . . . . . . . . . . . . . 15
⊢ (𝑑 ∈ 𝐵 → ∀𝑥 ∈ 𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑) |
91 | 52, 90 | bnj770 32743 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → ∀𝑥 ∈ 𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑) |
92 | 89, 91, 72 | rspcdva 3562 |
. . . . . . . . . . . . 13
⊢ (𝜑 → pred(𝑧, 𝐴, 𝑅) ⊆ 𝑑) |
93 | 92, 71 | sseqtrrd 3962 |
. . . . . . . . . . . 12
⊢ (𝜑 → pred(𝑧, 𝐴, 𝑅) ⊆ dom 𝑓) |
94 | 79, 87, 93 | bnj1503 32829 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑄 ↾ pred(𝑧, 𝐴, 𝑅)) = (𝑓 ↾ pred(𝑧, 𝐴, 𝑅))) |
95 | 94 | opeq2d 4811 |
. . . . . . . . . 10
⊢ (𝜑 → 〈𝑧, (𝑄 ↾ pred(𝑧, 𝐴, 𝑅))〉 = 〈𝑧, (𝑓 ↾ pred(𝑧, 𝐴, 𝑅))〉) |
96 | 95, 28, 55 | 3eqtr4g 2803 |
. . . . . . . . 9
⊢ (𝜑 → 𝑊 = 𝑋) |
97 | 96 | fveq2d 6778 |
. . . . . . . 8
⊢ (𝜑 → (𝐺‘𝑊) = (𝐺‘𝑋)) |
98 | 73, 88, 97 | 3eqtr4d 2788 |
. . . . . . 7
⊢ (𝜑 → (𝑄‘𝑧) = (𝐺‘𝑊)) |
99 | 57, 98 | bnj593 32725 |
. . . . . 6
⊢ (𝜎 → ∃𝑑(𝑄‘𝑧) = (𝐺‘𝑊)) |
100 | 18, 19, 20, 21, 22, 23, 24, 25, 12, 9, 26, 27, 28 | bnj1446 33025 |
. . . . . 6
⊢ ((𝑄‘𝑧) = (𝐺‘𝑊) → ∀𝑑(𝑄‘𝑧) = (𝐺‘𝑊)) |
101 | 99, 100 | bnj1397 32814 |
. . . . 5
⊢ (𝜎 → (𝑄‘𝑧) = (𝐺‘𝑊)) |
102 | 46, 101 | bnj593 32725 |
. . . 4
⊢ (𝜌 → ∃𝑦(𝑄‘𝑧) = (𝐺‘𝑊)) |
103 | 18, 19, 20, 21, 22, 23, 24, 25, 12, 9, 26, 27, 28 | bnj1447 33026 |
. . . 4
⊢ ((𝑄‘𝑧) = (𝐺‘𝑊) → ∀𝑦(𝑄‘𝑧) = (𝐺‘𝑊)) |
104 | 102, 103 | bnj1397 32814 |
. . 3
⊢ (𝜌 → (𝑄‘𝑧) = (𝐺‘𝑊)) |
105 | 33, 104 | bnj593 32725 |
. 2
⊢ (𝜁 → ∃𝑓(𝑄‘𝑧) = (𝐺‘𝑊)) |
106 | 18, 19, 20, 21, 22, 23, 24, 25, 12, 9, 26, 27, 28 | bnj1448 33027 |
. 2
⊢ ((𝑄‘𝑧) = (𝐺‘𝑊) → ∀𝑓(𝑄‘𝑧) = (𝐺‘𝑊)) |
107 | 105, 106 | bnj1397 32814 |
1
⊢ (𝜁 → (𝑄‘𝑧) = (𝐺‘𝑊)) |