Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj1450 Structured version   Visualization version   GIF version

Theorem bnj1450 32324
Description: Technical lemma for bnj60 32336. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj1450.1 𝐵 = {𝑑 ∣ (𝑑𝐴 ∧ ∀𝑥𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑)}
bnj1450.2 𝑌 = ⟨𝑥, (𝑓 ↾ pred(𝑥, 𝐴, 𝑅))⟩
bnj1450.3 𝐶 = {𝑓 ∣ ∃𝑑𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥𝑑 (𝑓𝑥) = (𝐺𝑌))}
bnj1450.4 (𝜏 ↔ (𝑓𝐶 ∧ dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅))))
bnj1450.5 𝐷 = {𝑥𝐴 ∣ ¬ ∃𝑓𝜏}
bnj1450.6 (𝜓 ↔ (𝑅 FrSe 𝐴𝐷 ≠ ∅))
bnj1450.7 (𝜒 ↔ (𝜓𝑥𝐷 ∧ ∀𝑦𝐷 ¬ 𝑦𝑅𝑥))
bnj1450.8 (𝜏′[𝑦 / 𝑥]𝜏)
bnj1450.9 𝐻 = {𝑓 ∣ ∃𝑦 ∈ pred (𝑥, 𝐴, 𝑅)𝜏′}
bnj1450.10 𝑃 = 𝐻
bnj1450.11 𝑍 = ⟨𝑥, (𝑃 ↾ pred(𝑥, 𝐴, 𝑅))⟩
bnj1450.12 𝑄 = (𝑃 ∪ {⟨𝑥, (𝐺𝑍)⟩})
bnj1450.13 𝑊 = ⟨𝑧, (𝑄 ↾ pred(𝑧, 𝐴, 𝑅))⟩
bnj1450.14 𝐸 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅))
bnj1450.15 (𝜒𝑃 Fn trCl(𝑥, 𝐴, 𝑅))
bnj1450.16 (𝜒𝑄 Fn ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅)))
bnj1450.17 (𝜃 ↔ (𝜒𝑧𝐸))
bnj1450.18 (𝜂 ↔ (𝜃𝑧 ∈ {𝑥}))
bnj1450.19 (𝜁 ↔ (𝜃𝑧 ∈ trCl(𝑥, 𝐴, 𝑅)))
bnj1450.20 (𝜌 ↔ (𝜁𝑓𝐻𝑧 ∈ dom 𝑓))
bnj1450.21 (𝜎 ↔ (𝜌𝑦 ∈ pred(𝑥, 𝐴, 𝑅) ∧ 𝑓𝐶 ∧ dom 𝑓 = ({𝑦} ∪ trCl(𝑦, 𝐴, 𝑅))))
bnj1450.22 (𝜑 ↔ (𝜎𝑑𝐵𝑓 Fn 𝑑 ∧ ∀𝑥𝑑 (𝑓𝑥) = (𝐺𝑌)))
bnj1450.23 𝑋 = ⟨𝑧, (𝑓 ↾ pred(𝑧, 𝐴, 𝑅))⟩
Assertion
Ref Expression
bnj1450 (𝜁 → (𝑄𝑧) = (𝐺𝑊))
Distinct variable groups:   𝐴,𝑑,𝑓,𝑥,𝑦,𝑧   𝐵,𝑓   𝑦,𝐷   𝐸,𝑑,𝑓,𝑦   𝐺,𝑑,𝑓,𝑥,𝑦,𝑧   𝑅,𝑑,𝑓,𝑥,𝑦,𝑧   𝑥,𝑋   𝑧,𝑌   𝜓,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧,𝑓,𝑑)   𝜓(𝑥,𝑧,𝑓,𝑑)   𝜒(𝑥,𝑦,𝑧,𝑓,𝑑)   𝜃(𝑥,𝑦,𝑧,𝑓,𝑑)   𝜏(𝑥,𝑦,𝑧,𝑓,𝑑)   𝜂(𝑥,𝑦,𝑧,𝑓,𝑑)   𝜁(𝑥,𝑦,𝑧,𝑓,𝑑)   𝜎(𝑥,𝑦,𝑧,𝑓,𝑑)   𝜌(𝑥,𝑦,𝑧,𝑓,𝑑)   𝐵(𝑥,𝑦,𝑧,𝑑)   𝐶(𝑥,𝑦,𝑧,𝑓,𝑑)   𝐷(𝑥,𝑧,𝑓,𝑑)   𝑃(𝑥,𝑦,𝑧,𝑓,𝑑)   𝑄(𝑥,𝑦,𝑧,𝑓,𝑑)   𝐸(𝑥,𝑧)   𝐻(𝑥,𝑦,𝑧,𝑓,𝑑)   𝑊(𝑥,𝑦,𝑧,𝑓,𝑑)   𝑋(𝑦,𝑧,𝑓,𝑑)   𝑌(𝑥,𝑦,𝑓,𝑑)   𝑍(𝑥,𝑦,𝑧,𝑓,𝑑)   𝜏′(𝑥,𝑦,𝑧,𝑓,𝑑)

Proof of Theorem bnj1450
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 bnj1450.19 . . . . . . . . 9 (𝜁 ↔ (𝜃𝑧 ∈ trCl(𝑥, 𝐴, 𝑅)))
21simprbi 499 . . . . . . . 8 (𝜁𝑧 ∈ trCl(𝑥, 𝐴, 𝑅))
3 bnj1450.17 . . . . . . . . . 10 (𝜃 ↔ (𝜒𝑧𝐸))
4 bnj1450.15 . . . . . . . . . . 11 (𝜒𝑃 Fn trCl(𝑥, 𝐴, 𝑅))
54fndmd 6458 . . . . . . . . . 10 (𝜒 → dom 𝑃 = trCl(𝑥, 𝐴, 𝑅))
63, 5bnj832 32031 . . . . . . . . 9 (𝜃 → dom 𝑃 = trCl(𝑥, 𝐴, 𝑅))
71, 6bnj832 32031 . . . . . . . 8 (𝜁 → dom 𝑃 = trCl(𝑥, 𝐴, 𝑅))
82, 7eleqtrrd 2918 . . . . . . 7 (𝜁𝑧 ∈ dom 𝑃)
9 bnj1450.10 . . . . . . . 8 𝑃 = 𝐻
109dmeqi 5775 . . . . . . 7 dom 𝑃 = dom 𝐻
118, 10eleqtrdi 2925 . . . . . 6 (𝜁𝑧 ∈ dom 𝐻)
12 bnj1450.9 . . . . . . . 8 𝐻 = {𝑓 ∣ ∃𝑦 ∈ pred (𝑥, 𝐴, 𝑅)𝜏′}
1312bnj1317 32095 . . . . . . 7 (𝑤𝐻 → ∀𝑓 𝑤𝐻)
1413bnj1400 32109 . . . . . 6 dom 𝐻 = 𝑓𝐻 dom 𝑓
1511, 14eleqtrdi 2925 . . . . 5 (𝜁𝑧 𝑓𝐻 dom 𝑓)
1615bnj1405 32110 . . . 4 (𝜁 → ∃𝑓𝐻 𝑧 ∈ dom 𝑓)
17 bnj1450.20 . . . 4 (𝜌 ↔ (𝜁𝑓𝐻𝑧 ∈ dom 𝑓))
18 bnj1450.1 . . . . 5 𝐵 = {𝑑 ∣ (𝑑𝐴 ∧ ∀𝑥𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑)}
19 bnj1450.2 . . . . 5 𝑌 = ⟨𝑥, (𝑓 ↾ pred(𝑥, 𝐴, 𝑅))⟩
20 bnj1450.3 . . . . 5 𝐶 = {𝑓 ∣ ∃𝑑𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥𝑑 (𝑓𝑥) = (𝐺𝑌))}
21 bnj1450.4 . . . . 5 (𝜏 ↔ (𝑓𝐶 ∧ dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅))))
22 bnj1450.5 . . . . 5 𝐷 = {𝑥𝐴 ∣ ¬ ∃𝑓𝜏}
23 bnj1450.6 . . . . 5 (𝜓 ↔ (𝑅 FrSe 𝐴𝐷 ≠ ∅))
24 bnj1450.7 . . . . 5 (𝜒 ↔ (𝜓𝑥𝐷 ∧ ∀𝑦𝐷 ¬ 𝑦𝑅𝑥))
25 bnj1450.8 . . . . 5 (𝜏′[𝑦 / 𝑥]𝜏)
26 bnj1450.11 . . . . 5 𝑍 = ⟨𝑥, (𝑃 ↾ pred(𝑥, 𝐴, 𝑅))⟩
27 bnj1450.12 . . . . 5 𝑄 = (𝑃 ∪ {⟨𝑥, (𝐺𝑍)⟩})
28 bnj1450.13 . . . . 5 𝑊 = ⟨𝑧, (𝑄 ↾ pred(𝑧, 𝐴, 𝑅))⟩
29 bnj1450.14 . . . . 5 𝐸 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅))
30 bnj1450.16 . . . . 5 (𝜒𝑄 Fn ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅)))
31 bnj1450.18 . . . . 5 (𝜂 ↔ (𝜃𝑧 ∈ {𝑥}))
3218, 19, 20, 21, 22, 23, 24, 25, 12, 9, 26, 27, 28, 29, 4, 30, 3, 31, 1bnj1449 32322 . . . 4 (𝜁 → ∀𝑓𝜁)
3316, 17, 32bnj1521 32125 . . 3 (𝜁 → ∃𝑓𝜌)
3412bnj1436 32113 . . . . . . . . . 10 (𝑓𝐻 → ∃𝑦 ∈ pred (𝑥, 𝐴, 𝑅)𝜏′)
3517, 34bnj836 32033 . . . . . . . . 9 (𝜌 → ∃𝑦 ∈ pred (𝑥, 𝐴, 𝑅)𝜏′)
3618, 19, 20, 21, 25bnj1373 32304 . . . . . . . . . 10 (𝜏′ ↔ (𝑓𝐶 ∧ dom 𝑓 = ({𝑦} ∪ trCl(𝑦, 𝐴, 𝑅))))
3736rexbii 3249 . . . . . . . . 9 (∃𝑦 ∈ pred (𝑥, 𝐴, 𝑅)𝜏′ ↔ ∃𝑦 ∈ pred (𝑥, 𝐴, 𝑅)(𝑓𝐶 ∧ dom 𝑓 = ({𝑦} ∪ trCl(𝑦, 𝐴, 𝑅))))
3835, 37sylib 220 . . . . . . . 8 (𝜌 → ∃𝑦 ∈ pred (𝑥, 𝐴, 𝑅)(𝑓𝐶 ∧ dom 𝑓 = ({𝑦} ∪ trCl(𝑦, 𝐴, 𝑅))))
3938bnj1196 32068 . . . . . . 7 (𝜌 → ∃𝑦(𝑦 ∈ pred(𝑥, 𝐴, 𝑅) ∧ (𝑓𝐶 ∧ dom 𝑓 = ({𝑦} ∪ trCl(𝑦, 𝐴, 𝑅)))))
40 3anass 1091 . . . . . . 7 ((𝑦 ∈ pred(𝑥, 𝐴, 𝑅) ∧ 𝑓𝐶 ∧ dom 𝑓 = ({𝑦} ∪ trCl(𝑦, 𝐴, 𝑅))) ↔ (𝑦 ∈ pred(𝑥, 𝐴, 𝑅) ∧ (𝑓𝐶 ∧ dom 𝑓 = ({𝑦} ∪ trCl(𝑦, 𝐴, 𝑅)))))
4139, 40bnj1198 32069 . . . . . 6 (𝜌 → ∃𝑦(𝑦 ∈ pred(𝑥, 𝐴, 𝑅) ∧ 𝑓𝐶 ∧ dom 𝑓 = ({𝑦} ∪ trCl(𝑦, 𝐴, 𝑅))))
42 bnj1450.21 . . . . . . 7 (𝜎 ↔ (𝜌𝑦 ∈ pred(𝑥, 𝐴, 𝑅) ∧ 𝑓𝐶 ∧ dom 𝑓 = ({𝑦} ∪ trCl(𝑦, 𝐴, 𝑅))))
43 bnj252 31975 . . . . . . 7 ((𝜌𝑦 ∈ pred(𝑥, 𝐴, 𝑅) ∧ 𝑓𝐶 ∧ dom 𝑓 = ({𝑦} ∪ trCl(𝑦, 𝐴, 𝑅))) ↔ (𝜌 ∧ (𝑦 ∈ pred(𝑥, 𝐴, 𝑅) ∧ 𝑓𝐶 ∧ dom 𝑓 = ({𝑦} ∪ trCl(𝑦, 𝐴, 𝑅)))))
4442, 43bitri 277 . . . . . 6 (𝜎 ↔ (𝜌 ∧ (𝑦 ∈ pred(𝑥, 𝐴, 𝑅) ∧ 𝑓𝐶 ∧ dom 𝑓 = ({𝑦} ∪ trCl(𝑦, 𝐴, 𝑅)))))
4518, 19, 20, 21, 22, 23, 24, 25, 12, 9, 26, 27, 28, 29, 4, 30, 3, 31, 1, 17bnj1444 32317 . . . . . 6 (𝜌 → ∀𝑦𝜌)
4641, 44, 45bnj1340 32097 . . . . 5 (𝜌 → ∃𝑦𝜎)
4720bnj1436 32113 . . . . . . . . . . 11 (𝑓𝐶 → ∃𝑑𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥𝑑 (𝑓𝑥) = (𝐺𝑌)))
4842, 47bnj771 32037 . . . . . . . . . 10 (𝜎 → ∃𝑑𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥𝑑 (𝑓𝑥) = (𝐺𝑌)))
4948bnj1196 32068 . . . . . . . . 9 (𝜎 → ∃𝑑(𝑑𝐵 ∧ (𝑓 Fn 𝑑 ∧ ∀𝑥𝑑 (𝑓𝑥) = (𝐺𝑌))))
50 3anass 1091 . . . . . . . . 9 ((𝑑𝐵𝑓 Fn 𝑑 ∧ ∀𝑥𝑑 (𝑓𝑥) = (𝐺𝑌)) ↔ (𝑑𝐵 ∧ (𝑓 Fn 𝑑 ∧ ∀𝑥𝑑 (𝑓𝑥) = (𝐺𝑌))))
5149, 50bnj1198 32069 . . . . . . . 8 (𝜎 → ∃𝑑(𝑑𝐵𝑓 Fn 𝑑 ∧ ∀𝑥𝑑 (𝑓𝑥) = (𝐺𝑌)))
52 bnj1450.22 . . . . . . . . 9 (𝜑 ↔ (𝜎𝑑𝐵𝑓 Fn 𝑑 ∧ ∀𝑥𝑑 (𝑓𝑥) = (𝐺𝑌)))
53 bnj252 31975 . . . . . . . . 9 ((𝜎𝑑𝐵𝑓 Fn 𝑑 ∧ ∀𝑥𝑑 (𝑓𝑥) = (𝐺𝑌)) ↔ (𝜎 ∧ (𝑑𝐵𝑓 Fn 𝑑 ∧ ∀𝑥𝑑 (𝑓𝑥) = (𝐺𝑌))))
5452, 53bitri 277 . . . . . . . 8 (𝜑 ↔ (𝜎 ∧ (𝑑𝐵𝑓 Fn 𝑑 ∧ ∀𝑥𝑑 (𝑓𝑥) = (𝐺𝑌))))
55 bnj1450.23 . . . . . . . . 9 𝑋 = ⟨𝑧, (𝑓 ↾ pred(𝑧, 𝐴, 𝑅))⟩
5618, 19, 20, 21, 22, 23, 24, 25, 12, 9, 26, 27, 28, 29, 4, 30, 3, 31, 1, 17, 42, 52, 55bnj1445 32318 . . . . . . . 8 (𝜎 → ∀𝑑𝜎)
5751, 54, 56bnj1340 32097 . . . . . . 7 (𝜎 → ∃𝑑𝜑)
58 fveq2 6672 . . . . . . . . . 10 (𝑥 = 𝑧 → (𝑓𝑥) = (𝑓𝑧))
59 id 22 . . . . . . . . . . . . 13 (𝑥 = 𝑧𝑥 = 𝑧)
60 bnj602 32189 . . . . . . . . . . . . . 14 (𝑥 = 𝑧 → pred(𝑥, 𝐴, 𝑅) = pred(𝑧, 𝐴, 𝑅))
6160reseq2d 5855 . . . . . . . . . . . . 13 (𝑥 = 𝑧 → (𝑓 ↾ pred(𝑥, 𝐴, 𝑅)) = (𝑓 ↾ pred(𝑧, 𝐴, 𝑅)))
6259, 61opeq12d 4813 . . . . . . . . . . . 12 (𝑥 = 𝑧 → ⟨𝑥, (𝑓 ↾ pred(𝑥, 𝐴, 𝑅))⟩ = ⟨𝑧, (𝑓 ↾ pred(𝑧, 𝐴, 𝑅))⟩)
6362, 19, 553eqtr4g 2883 . . . . . . . . . . 11 (𝑥 = 𝑧𝑌 = 𝑋)
6463fveq2d 6676 . . . . . . . . . 10 (𝑥 = 𝑧 → (𝐺𝑌) = (𝐺𝑋))
6558, 64eqeq12d 2839 . . . . . . . . 9 (𝑥 = 𝑧 → ((𝑓𝑥) = (𝐺𝑌) ↔ (𝑓𝑧) = (𝐺𝑋)))
6652bnj1254 32083 . . . . . . . . 9 (𝜑 → ∀𝑥𝑑 (𝑓𝑥) = (𝐺𝑌))
6717simp3bi 1143 . . . . . . . . . . . 12 (𝜌𝑧 ∈ dom 𝑓)
6842, 67bnj769 32035 . . . . . . . . . . 11 (𝜎𝑧 ∈ dom 𝑓)
6952, 68bnj769 32035 . . . . . . . . . 10 (𝜑𝑧 ∈ dom 𝑓)
70 fndm 6457 . . . . . . . . . . 11 (𝑓 Fn 𝑑 → dom 𝑓 = 𝑑)
7152, 70bnj771 32037 . . . . . . . . . 10 (𝜑 → dom 𝑓 = 𝑑)
7269, 71eleqtrd 2917 . . . . . . . . 9 (𝜑𝑧𝑑)
7365, 66, 72rspcdva 3627 . . . . . . . 8 (𝜑 → (𝑓𝑧) = (𝐺𝑋))
7430bnj930 32043 . . . . . . . . . . . . . 14 (𝜒 → Fun 𝑄)
753, 74bnj832 32031 . . . . . . . . . . . . 13 (𝜃 → Fun 𝑄)
761, 75bnj832 32031 . . . . . . . . . . . 12 (𝜁 → Fun 𝑄)
7717, 76bnj835 32032 . . . . . . . . . . 11 (𝜌 → Fun 𝑄)
7842, 77bnj769 32035 . . . . . . . . . 10 (𝜎 → Fun 𝑄)
7952, 78bnj769 32035 . . . . . . . . 9 (𝜑 → Fun 𝑄)
8017simp2bi 1142 . . . . . . . . . . . 12 (𝜌𝑓𝐻)
8142, 80bnj769 32035 . . . . . . . . . . 11 (𝜎𝑓𝐻)
8252, 81bnj769 32035 . . . . . . . . . 10 (𝜑𝑓𝐻)
83 elssuni 4870 . . . . . . . . . . 11 (𝑓𝐻𝑓 𝐻)
8483, 9sseqtrrdi 4020 . . . . . . . . . 10 (𝑓𝐻𝑓𝑃)
85 ssun3 4152 . . . . . . . . . . 11 (𝑓𝑃𝑓 ⊆ (𝑃 ∪ {⟨𝑥, (𝐺𝑍)⟩}))
8685, 27sseqtrrdi 4020 . . . . . . . . . 10 (𝑓𝑃𝑓𝑄)
8782, 84, 863syl 18 . . . . . . . . 9 (𝜑𝑓𝑄)
8879, 87, 69bnj1502 32122 . . . . . . . 8 (𝜑 → (𝑄𝑧) = (𝑓𝑧))
8960sseq1d 4000 . . . . . . . . . . . . . 14 (𝑥 = 𝑧 → ( pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑 ↔ pred(𝑧, 𝐴, 𝑅) ⊆ 𝑑))
9018bnj1517 32124 . . . . . . . . . . . . . . 15 (𝑑𝐵 → ∀𝑥𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑)
9152, 90bnj770 32036 . . . . . . . . . . . . . 14 (𝜑 → ∀𝑥𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑)
9289, 91, 72rspcdva 3627 . . . . . . . . . . . . 13 (𝜑 → pred(𝑧, 𝐴, 𝑅) ⊆ 𝑑)
9392, 71sseqtrrd 4010 . . . . . . . . . . . 12 (𝜑 → pred(𝑧, 𝐴, 𝑅) ⊆ dom 𝑓)
9479, 87, 93bnj1503 32123 . . . . . . . . . . 11 (𝜑 → (𝑄 ↾ pred(𝑧, 𝐴, 𝑅)) = (𝑓 ↾ pred(𝑧, 𝐴, 𝑅)))
9594opeq2d 4812 . . . . . . . . . 10 (𝜑 → ⟨𝑧, (𝑄 ↾ pred(𝑧, 𝐴, 𝑅))⟩ = ⟨𝑧, (𝑓 ↾ pred(𝑧, 𝐴, 𝑅))⟩)
9695, 28, 553eqtr4g 2883 . . . . . . . . 9 (𝜑𝑊 = 𝑋)
9796fveq2d 6676 . . . . . . . 8 (𝜑 → (𝐺𝑊) = (𝐺𝑋))
9873, 88, 973eqtr4d 2868 . . . . . . 7 (𝜑 → (𝑄𝑧) = (𝐺𝑊))
9957, 98bnj593 32018 . . . . . 6 (𝜎 → ∃𝑑(𝑄𝑧) = (𝐺𝑊))
10018, 19, 20, 21, 22, 23, 24, 25, 12, 9, 26, 27, 28bnj1446 32319 . . . . . 6 ((𝑄𝑧) = (𝐺𝑊) → ∀𝑑(𝑄𝑧) = (𝐺𝑊))
10199, 100bnj1397 32108 . . . . 5 (𝜎 → (𝑄𝑧) = (𝐺𝑊))
10246, 101bnj593 32018 . . . 4 (𝜌 → ∃𝑦(𝑄𝑧) = (𝐺𝑊))
10318, 19, 20, 21, 22, 23, 24, 25, 12, 9, 26, 27, 28bnj1447 32320 . . . 4 ((𝑄𝑧) = (𝐺𝑊) → ∀𝑦(𝑄𝑧) = (𝐺𝑊))
104102, 103bnj1397 32108 . . 3 (𝜌 → (𝑄𝑧) = (𝐺𝑊))
10533, 104bnj593 32018 . 2 (𝜁 → ∃𝑓(𝑄𝑧) = (𝐺𝑊))
10618, 19, 20, 21, 22, 23, 24, 25, 12, 9, 26, 27, 28bnj1448 32321 . 2 ((𝑄𝑧) = (𝐺𝑊) → ∀𝑓(𝑄𝑧) = (𝐺𝑊))
107105, 106bnj1397 32108 1 (𝜁 → (𝑄𝑧) = (𝐺𝑊))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398  w3a 1083   = wceq 1537  wex 1780  wcel 2114  {cab 2801  wne 3018  wral 3140  wrex 3141  {crab 3144  [wsbc 3774  cun 3936  wss 3938  c0 4293  {csn 4569  cop 4575   cuni 4840   ciun 4921   class class class wbr 5068  dom cdm 5557  cres 5559  Fun wfun 6351   Fn wfn 6352  cfv 6357  w-bnj17 31958   predc-bnj14 31960   FrSe w-bnj15 31964   trClc-bnj18 31966
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-sep 5205  ax-nul 5212  ax-pr 5332
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-ral 3145  df-rex 3146  df-rab 3149  df-v 3498  df-sbc 3775  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-nul 4294  df-if 4470  df-sn 4570  df-pr 4572  df-op 4576  df-uni 4841  df-iun 4923  df-br 5069  df-opab 5131  df-id 5462  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-res 5569  df-iota 6316  df-fun 6359  df-fn 6360  df-fv 6365  df-bnj17 31959  df-bnj14 31961  df-bnj18 31967
This theorem is referenced by:  bnj1423  32325
  Copyright terms: Public domain W3C validator