|   | Mathbox for Thierry Arnoux | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > Mathboxes > elim2if | Structured version Visualization version GIF version | ||
| Description: Elimination of two conditional operators contained in a wff 𝜒. (Contributed by Thierry Arnoux, 25-Jan-2017.) | 
| Ref | Expression | 
|---|---|
| elim2if.1 | ⊢ (if(𝜑, 𝐴, if(𝜓, 𝐵, 𝐶)) = 𝐴 → (𝜒 ↔ 𝜃)) | 
| elim2if.2 | ⊢ (if(𝜑, 𝐴, if(𝜓, 𝐵, 𝐶)) = 𝐵 → (𝜒 ↔ 𝜏)) | 
| elim2if.3 | ⊢ (if(𝜑, 𝐴, if(𝜓, 𝐵, 𝐶)) = 𝐶 → (𝜒 ↔ 𝜂)) | 
| Ref | Expression | 
|---|---|
| elim2if | ⊢ (𝜒 ↔ ((𝜑 ∧ 𝜃) ∨ (¬ 𝜑 ∧ ((𝜓 ∧ 𝜏) ∨ (¬ 𝜓 ∧ 𝜂))))) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | iftrue 4531 | . . 3 ⊢ (𝜑 → if(𝜑, 𝐴, if(𝜓, 𝐵, 𝐶)) = 𝐴) | |
| 2 | elim2if.1 | . . 3 ⊢ (if(𝜑, 𝐴, if(𝜓, 𝐵, 𝐶)) = 𝐴 → (𝜒 ↔ 𝜃)) | |
| 3 | 1, 2 | syl 17 | . 2 ⊢ (𝜑 → (𝜒 ↔ 𝜃)) | 
| 4 | iffalse 4534 | . . . . 5 ⊢ (¬ 𝜑 → if(𝜑, 𝐴, if(𝜓, 𝐵, 𝐶)) = if(𝜓, 𝐵, 𝐶)) | |
| 5 | 4 | eqeq1d 2739 | . . . 4 ⊢ (¬ 𝜑 → (if(𝜑, 𝐴, if(𝜓, 𝐵, 𝐶)) = 𝐵 ↔ if(𝜓, 𝐵, 𝐶) = 𝐵)) | 
| 6 | elim2if.2 | . . . 4 ⊢ (if(𝜑, 𝐴, if(𝜓, 𝐵, 𝐶)) = 𝐵 → (𝜒 ↔ 𝜏)) | |
| 7 | 5, 6 | biimtrrdi 254 | . . 3 ⊢ (¬ 𝜑 → (if(𝜓, 𝐵, 𝐶) = 𝐵 → (𝜒 ↔ 𝜏))) | 
| 8 | 4 | eqeq1d 2739 | . . . 4 ⊢ (¬ 𝜑 → (if(𝜑, 𝐴, if(𝜓, 𝐵, 𝐶)) = 𝐶 ↔ if(𝜓, 𝐵, 𝐶) = 𝐶)) | 
| 9 | elim2if.3 | . . . 4 ⊢ (if(𝜑, 𝐴, if(𝜓, 𝐵, 𝐶)) = 𝐶 → (𝜒 ↔ 𝜂)) | |
| 10 | 8, 9 | biimtrrdi 254 | . . 3 ⊢ (¬ 𝜑 → (if(𝜓, 𝐵, 𝐶) = 𝐶 → (𝜒 ↔ 𝜂))) | 
| 11 | 7, 10 | elimifd 32556 | . 2 ⊢ (¬ 𝜑 → (𝜒 ↔ ((𝜓 ∧ 𝜏) ∨ (¬ 𝜓 ∧ 𝜂)))) | 
| 12 | 3, 11 | cases 1043 | 1 ⊢ (𝜒 ↔ ((𝜑 ∧ 𝜃) ∨ (¬ 𝜑 ∧ ((𝜓 ∧ 𝜏) ∨ (¬ 𝜓 ∧ 𝜂))))) | 
| Colors of variables: wff setvar class | 
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 848 = wceq 1540 ifcif 4525 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2708 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-ex 1780 df-sb 2065 df-clab 2715 df-cleq 2729 df-clel 2816 df-if 4526 | 
| This theorem is referenced by: elim2ifim 32558 | 
| Copyright terms: Public domain | W3C validator |