MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elimif Structured version   Visualization version   GIF version

Theorem elimif 4496
Description: Elimination of a conditional operator contained in a wff 𝜓. (Contributed by NM, 15-Feb-2005.) (Proof shortened by NM, 25-Apr-2019.)
Hypotheses
Ref Expression
elimif.1 (if(𝜑, 𝐴, 𝐵) = 𝐴 → (𝜓𝜒))
elimif.2 (if(𝜑, 𝐴, 𝐵) = 𝐵 → (𝜓𝜃))
Assertion
Ref Expression
elimif (𝜓 ↔ ((𝜑𝜒) ∨ (¬ 𝜑𝜃)))

Proof of Theorem elimif
StepHypRef Expression
1 iftrue 4465 . . 3 (𝜑 → if(𝜑, 𝐴, 𝐵) = 𝐴)
2 elimif.1 . . 3 (if(𝜑, 𝐴, 𝐵) = 𝐴 → (𝜓𝜒))
31, 2syl 17 . 2 (𝜑 → (𝜓𝜒))
4 iffalse 4468 . . 3 𝜑 → if(𝜑, 𝐴, 𝐵) = 𝐵)
5 elimif.2 . . 3 (if(𝜑, 𝐴, 𝐵) = 𝐵 → (𝜓𝜃))
64, 5syl 17 . 2 𝜑 → (𝜓𝜃))
73, 6cases 1040 1 (𝜓 ↔ ((𝜑𝜒) ∨ (¬ 𝜑𝜃)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  wo 844   = wceq 1539  ifcif 4459
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-if 4460
This theorem is referenced by:  eqif  4500  elif  4502  ifel  4503  ftc1anclem5  35854  clsk1indlem2  41652
  Copyright terms: Public domain W3C validator