![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elimif | Structured version Visualization version GIF version |
Description: Elimination of a conditional operator contained in a wff 𝜓. (Contributed by NM, 15-Feb-2005.) (Proof shortened by NM, 25-Apr-2019.) |
Ref | Expression |
---|---|
elimif.1 | ⊢ (if(𝜑, 𝐴, 𝐵) = 𝐴 → (𝜓 ↔ 𝜒)) |
elimif.2 | ⊢ (if(𝜑, 𝐴, 𝐵) = 𝐵 → (𝜓 ↔ 𝜃)) |
Ref | Expression |
---|---|
elimif | ⊢ (𝜓 ↔ ((𝜑 ∧ 𝜒) ∨ (¬ 𝜑 ∧ 𝜃))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iftrue 4493 | . . 3 ⊢ (𝜑 → if(𝜑, 𝐴, 𝐵) = 𝐴) | |
2 | elimif.1 | . . 3 ⊢ (if(𝜑, 𝐴, 𝐵) = 𝐴 → (𝜓 ↔ 𝜒)) | |
3 | 1, 2 | syl 17 | . 2 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
4 | iffalse 4496 | . . 3 ⊢ (¬ 𝜑 → if(𝜑, 𝐴, 𝐵) = 𝐵) | |
5 | elimif.2 | . . 3 ⊢ (if(𝜑, 𝐴, 𝐵) = 𝐵 → (𝜓 ↔ 𝜃)) | |
6 | 4, 5 | syl 17 | . 2 ⊢ (¬ 𝜑 → (𝜓 ↔ 𝜃)) |
7 | 3, 6 | cases 1042 | 1 ⊢ (𝜓 ↔ ((𝜑 ∧ 𝜒) ∨ (¬ 𝜑 ∧ 𝜃))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 397 ∨ wo 846 = wceq 1542 ifcif 4487 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2708 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-ex 1783 df-sb 2069 df-clab 2715 df-cleq 2729 df-clel 2815 df-if 4488 |
This theorem is referenced by: eqif 4528 elif 4530 ifel 4531 ftc1anclem5 36158 clsk1indlem2 42321 |
Copyright terms: Public domain | W3C validator |