| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elimif | Structured version Visualization version GIF version | ||
| Description: Elimination of a conditional operator contained in a wff 𝜓. (Contributed by NM, 15-Feb-2005.) (Proof shortened by NM, 25-Apr-2019.) |
| Ref | Expression |
|---|---|
| elimif.1 | ⊢ (if(𝜑, 𝐴, 𝐵) = 𝐴 → (𝜓 ↔ 𝜒)) |
| elimif.2 | ⊢ (if(𝜑, 𝐴, 𝐵) = 𝐵 → (𝜓 ↔ 𝜃)) |
| Ref | Expression |
|---|---|
| elimif | ⊢ (𝜓 ↔ ((𝜑 ∧ 𝜒) ∨ (¬ 𝜑 ∧ 𝜃))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iftrue 4506 | . . 3 ⊢ (𝜑 → if(𝜑, 𝐴, 𝐵) = 𝐴) | |
| 2 | elimif.1 | . . 3 ⊢ (if(𝜑, 𝐴, 𝐵) = 𝐴 → (𝜓 ↔ 𝜒)) | |
| 3 | 1, 2 | syl 17 | . 2 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| 4 | iffalse 4509 | . . 3 ⊢ (¬ 𝜑 → if(𝜑, 𝐴, 𝐵) = 𝐵) | |
| 5 | elimif.2 | . . 3 ⊢ (if(𝜑, 𝐴, 𝐵) = 𝐵 → (𝜓 ↔ 𝜃)) | |
| 6 | 4, 5 | syl 17 | . 2 ⊢ (¬ 𝜑 → (𝜓 ↔ 𝜃)) |
| 7 | 3, 6 | cases 1042 | 1 ⊢ (𝜓 ↔ ((𝜑 ∧ 𝜒) ∨ (¬ 𝜑 ∧ 𝜃))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 847 = wceq 1540 ifcif 4500 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-if 4501 |
| This theorem is referenced by: eqif 4542 elif 4544 ifel 4545 ftc1anclem5 37721 clsk1indlem2 44066 |
| Copyright terms: Public domain | W3C validator |