Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cbvcllem Structured version   Visualization version   GIF version

Theorem cbvcllem 41106
Description: Change of bound variable in class of supersets of a with a property. (Contributed by RP, 24-Jul-2020.)
Hypothesis
Ref Expression
cbvcllem.y (𝑥 = 𝑦 → (𝜑𝜓))
Assertion
Ref Expression
cbvcllem {𝑥 ∣ (𝑋𝑥𝜑)} = {𝑦 ∣ (𝑋𝑦𝜓)}
Distinct variable groups:   𝑥,𝑦,𝑋   𝜓,𝑥   𝜑,𝑦
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑦)

Proof of Theorem cbvcllem
StepHypRef Expression
1 cbvcllem.y . . 3 (𝑥 = 𝑦 → (𝜑𝜓))
21cleq2lem 41105 . 2 (𝑥 = 𝑦 → ((𝑋𝑥𝜑) ↔ (𝑋𝑦𝜓)))
32cbvabv 2812 1 {𝑥 ∣ (𝑋𝑥𝜑)} = {𝑦 ∣ (𝑋𝑦𝜓)}
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 395   = wceq 1539  {cab 2715  wss 3883
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1542  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-v 3424  df-in 3890  df-ss 3900
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator