![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > cbvcllem | Structured version Visualization version GIF version |
Description: Change of bound variable in class of supersets of a with a property. (Contributed by RP, 24-Jul-2020.) |
Ref | Expression |
---|---|
cbvcllem.y | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
cbvcllem | ⊢ {𝑥 ∣ (𝑋 ⊆ 𝑥 ∧ 𝜑)} = {𝑦 ∣ (𝑋 ⊆ 𝑦 ∧ 𝜓)} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cbvcllem.y | . . 3 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
2 | 1 | cleq2lem 43570 | . 2 ⊢ (𝑥 = 𝑦 → ((𝑋 ⊆ 𝑥 ∧ 𝜑) ↔ (𝑋 ⊆ 𝑦 ∧ 𝜓))) |
3 | 2 | cbvabv 2815 | 1 ⊢ {𝑥 ∣ (𝑋 ⊆ 𝑥 ∧ 𝜑)} = {𝑦 ∣ (𝑋 ⊆ 𝑦 ∧ 𝜓)} |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1537 {cab 2717 ⊆ wss 3976 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-ss 3993 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |