Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  clublem Structured version   Visualization version   GIF version

Theorem clublem 40894
Description: If a superset 𝑌 of 𝑋 possesses the property parameterized in 𝑥 in 𝜓, then 𝑌 is a superset of the closure of that property for the set 𝑋. (Contributed by RP, 23-Jul-2020.)
Hypotheses
Ref Expression
clublem.y (𝜑𝑌 ∈ V)
clublem.sub (𝑥 = 𝑌 → (𝜓𝜒))
clublem.sup (𝜑𝑋𝑌)
clublem.maj (𝜑𝜒)
Assertion
Ref Expression
clublem (𝜑 {𝑥 ∣ (𝑋𝑥𝜓)} ⊆ 𝑌)
Distinct variable groups:   𝜒,𝑥   𝑥,𝑋   𝑥,𝑌
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑥)

Proof of Theorem clublem
StepHypRef Expression
1 clublem.sup . . 3 (𝜑𝑋𝑌)
2 clublem.maj . . 3 (𝜑𝜒)
3 clublem.y . . . . 5 (𝜑𝑌 ∈ V)
43a1d 25 . . . 4 (𝜑 → ((𝑋𝑌𝜒) → 𝑌 ∈ V))
5 clublem.sub . . . . . 6 (𝑥 = 𝑌 → (𝜓𝜒))
65cleq2lem 40892 . . . . 5 (𝑥 = 𝑌 → ((𝑋𝑥𝜓) ↔ (𝑋𝑌𝜒)))
76elab3g 3594 . . . 4 (((𝑋𝑌𝜒) → 𝑌 ∈ V) → (𝑌 ∈ {𝑥 ∣ (𝑋𝑥𝜓)} ↔ (𝑋𝑌𝜒)))
84, 7syl 17 . . 3 (𝜑 → (𝑌 ∈ {𝑥 ∣ (𝑋𝑥𝜓)} ↔ (𝑋𝑌𝜒)))
91, 2, 8mpbir2and 713 . 2 (𝜑𝑌 ∈ {𝑥 ∣ (𝑋𝑥𝜓)})
10 intss1 4874 . 2 (𝑌 ∈ {𝑥 ∣ (𝑋𝑥𝜓)} → {𝑥 ∣ (𝑋𝑥𝜓)} ⊆ 𝑌)
119, 10syl 17 1 (𝜑 {𝑥 ∣ (𝑋𝑥𝜓)} ⊆ 𝑌)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1543  wcel 2110  {cab 2714  Vcvv 3408  wss 3866   cint 4859
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-ext 2708
This theorem depends on definitions:  df-bi 210  df-an 400  df-tru 1546  df-ex 1788  df-sb 2071  df-clab 2715  df-cleq 2729  df-clel 2816  df-v 3410  df-in 3873  df-ss 3883  df-int 4860
This theorem is referenced by:  mptrcllem  40897  trclubgNEW  40902
  Copyright terms: Public domain W3C validator