|   | Mathbox for Richard Penner | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > Mathboxes > clublem | Structured version Visualization version GIF version | ||
| Description: If a superset 𝑌 of 𝑋 possesses the property parameterized in 𝑥 in 𝜓, then 𝑌 is a superset of the closure of that property for the set 𝑋. (Contributed by RP, 23-Jul-2020.) | 
| Ref | Expression | 
|---|---|
| clublem.y | ⊢ (𝜑 → 𝑌 ∈ V) | 
| clublem.sub | ⊢ (𝑥 = 𝑌 → (𝜓 ↔ 𝜒)) | 
| clublem.sup | ⊢ (𝜑 → 𝑋 ⊆ 𝑌) | 
| clublem.maj | ⊢ (𝜑 → 𝜒) | 
| Ref | Expression | 
|---|---|
| clublem | ⊢ (𝜑 → ∩ {𝑥 ∣ (𝑋 ⊆ 𝑥 ∧ 𝜓)} ⊆ 𝑌) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | clublem.sup | . . 3 ⊢ (𝜑 → 𝑋 ⊆ 𝑌) | |
| 2 | clublem.maj | . . 3 ⊢ (𝜑 → 𝜒) | |
| 3 | clublem.y | . . . . 5 ⊢ (𝜑 → 𝑌 ∈ V) | |
| 4 | 3 | a1d 25 | . . . 4 ⊢ (𝜑 → ((𝑋 ⊆ 𝑌 ∧ 𝜒) → 𝑌 ∈ V)) | 
| 5 | clublem.sub | . . . . . 6 ⊢ (𝑥 = 𝑌 → (𝜓 ↔ 𝜒)) | |
| 6 | 5 | cleq2lem 43626 | . . . . 5 ⊢ (𝑥 = 𝑌 → ((𝑋 ⊆ 𝑥 ∧ 𝜓) ↔ (𝑋 ⊆ 𝑌 ∧ 𝜒))) | 
| 7 | 6 | elab3g 3684 | . . . 4 ⊢ (((𝑋 ⊆ 𝑌 ∧ 𝜒) → 𝑌 ∈ V) → (𝑌 ∈ {𝑥 ∣ (𝑋 ⊆ 𝑥 ∧ 𝜓)} ↔ (𝑋 ⊆ 𝑌 ∧ 𝜒))) | 
| 8 | 4, 7 | syl 17 | . . 3 ⊢ (𝜑 → (𝑌 ∈ {𝑥 ∣ (𝑋 ⊆ 𝑥 ∧ 𝜓)} ↔ (𝑋 ⊆ 𝑌 ∧ 𝜒))) | 
| 9 | 1, 2, 8 | mpbir2and 713 | . 2 ⊢ (𝜑 → 𝑌 ∈ {𝑥 ∣ (𝑋 ⊆ 𝑥 ∧ 𝜓)}) | 
| 10 | intss1 4962 | . 2 ⊢ (𝑌 ∈ {𝑥 ∣ (𝑋 ⊆ 𝑥 ∧ 𝜓)} → ∩ {𝑥 ∣ (𝑋 ⊆ 𝑥 ∧ 𝜓)} ⊆ 𝑌) | |
| 11 | 9, 10 | syl 17 | 1 ⊢ (𝜑 → ∩ {𝑥 ∣ (𝑋 ⊆ 𝑥 ∧ 𝜓)} ⊆ 𝑌) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1539 ∈ wcel 2107 {cab 2713 Vcvv 3479 ⊆ wss 3950 ∩ cint 4945 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2707 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1542 df-ex 1779 df-sb 2064 df-clab 2714 df-cleq 2728 df-clel 2815 df-v 3481 df-ss 3967 df-int 4946 | 
| This theorem is referenced by: mptrcllem 43631 trclubgNEW 43636 | 
| Copyright terms: Public domain | W3C validator |