| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > clublem | Structured version Visualization version GIF version | ||
| Description: If a superset 𝑌 of 𝑋 possesses the property parameterized in 𝑥 in 𝜓, then 𝑌 is a superset of the closure of that property for the set 𝑋. (Contributed by RP, 23-Jul-2020.) |
| Ref | Expression |
|---|---|
| clublem.y | ⊢ (𝜑 → 𝑌 ∈ V) |
| clublem.sub | ⊢ (𝑥 = 𝑌 → (𝜓 ↔ 𝜒)) |
| clublem.sup | ⊢ (𝜑 → 𝑋 ⊆ 𝑌) |
| clublem.maj | ⊢ (𝜑 → 𝜒) |
| Ref | Expression |
|---|---|
| clublem | ⊢ (𝜑 → ∩ {𝑥 ∣ (𝑋 ⊆ 𝑥 ∧ 𝜓)} ⊆ 𝑌) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | clublem.sup | . . 3 ⊢ (𝜑 → 𝑋 ⊆ 𝑌) | |
| 2 | clublem.maj | . . 3 ⊢ (𝜑 → 𝜒) | |
| 3 | clublem.y | . . . . 5 ⊢ (𝜑 → 𝑌 ∈ V) | |
| 4 | 3 | a1d 25 | . . . 4 ⊢ (𝜑 → ((𝑋 ⊆ 𝑌 ∧ 𝜒) → 𝑌 ∈ V)) |
| 5 | clublem.sub | . . . . . 6 ⊢ (𝑥 = 𝑌 → (𝜓 ↔ 𝜒)) | |
| 6 | 5 | cleq2lem 43598 | . . . . 5 ⊢ (𝑥 = 𝑌 → ((𝑋 ⊆ 𝑥 ∧ 𝜓) ↔ (𝑋 ⊆ 𝑌 ∧ 𝜒))) |
| 7 | 6 | elab3g 3668 | . . . 4 ⊢ (((𝑋 ⊆ 𝑌 ∧ 𝜒) → 𝑌 ∈ V) → (𝑌 ∈ {𝑥 ∣ (𝑋 ⊆ 𝑥 ∧ 𝜓)} ↔ (𝑋 ⊆ 𝑌 ∧ 𝜒))) |
| 8 | 4, 7 | syl 17 | . . 3 ⊢ (𝜑 → (𝑌 ∈ {𝑥 ∣ (𝑋 ⊆ 𝑥 ∧ 𝜓)} ↔ (𝑋 ⊆ 𝑌 ∧ 𝜒))) |
| 9 | 1, 2, 8 | mpbir2and 713 | . 2 ⊢ (𝜑 → 𝑌 ∈ {𝑥 ∣ (𝑋 ⊆ 𝑥 ∧ 𝜓)}) |
| 10 | intss1 4943 | . 2 ⊢ (𝑌 ∈ {𝑥 ∣ (𝑋 ⊆ 𝑥 ∧ 𝜓)} → ∩ {𝑥 ∣ (𝑋 ⊆ 𝑥 ∧ 𝜓)} ⊆ 𝑌) | |
| 11 | 9, 10 | syl 17 | 1 ⊢ (𝜑 → ∩ {𝑥 ∣ (𝑋 ⊆ 𝑥 ∧ 𝜓)} ⊆ 𝑌) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1539 ∈ wcel 2107 {cab 2712 Vcvv 3463 ⊆ wss 3931 ∩ cint 4926 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2706 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1542 df-ex 1779 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-v 3465 df-ss 3948 df-int 4927 |
| This theorem is referenced by: mptrcllem 43603 trclubgNEW 43608 |
| Copyright terms: Public domain | W3C validator |