Mathbox for Richard Penner < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  clublem Structured version   Visualization version   GIF version

Theorem clublem 40353
 Description: If a superset 𝑌 of 𝑋 possesses the property parameterized in 𝑥 in 𝜓, then 𝑌 is a superset of the closure of that property for the set 𝑋. (Contributed by RP, 23-Jul-2020.)
Hypotheses
Ref Expression
clublem.y (𝜑𝑌 ∈ V)
clublem.sub (𝑥 = 𝑌 → (𝜓𝜒))
clublem.sup (𝜑𝑋𝑌)
clublem.maj (𝜑𝜒)
Assertion
Ref Expression
clublem (𝜑 {𝑥 ∣ (𝑋𝑥𝜓)} ⊆ 𝑌)
Distinct variable groups:   𝜒,𝑥   𝑥,𝑋   𝑥,𝑌
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑥)

Proof of Theorem clublem
StepHypRef Expression
1 clublem.sup . . 3 (𝜑𝑋𝑌)
2 clublem.maj . . 3 (𝜑𝜒)
3 clublem.y . . . . 5 (𝜑𝑌 ∈ V)
43a1d 25 . . . 4 (𝜑 → ((𝑋𝑌𝜒) → 𝑌 ∈ V))
5 clublem.sub . . . . . 6 (𝑥 = 𝑌 → (𝜓𝜒))
65cleq2lem 40351 . . . . 5 (𝑥 = 𝑌 → ((𝑋𝑥𝜓) ↔ (𝑋𝑌𝜒)))
76elab3g 3621 . . . 4 (((𝑋𝑌𝜒) → 𝑌 ∈ V) → (𝑌 ∈ {𝑥 ∣ (𝑋𝑥𝜓)} ↔ (𝑋𝑌𝜒)))
84, 7syl 17 . . 3 (𝜑 → (𝑌 ∈ {𝑥 ∣ (𝑋𝑥𝜓)} ↔ (𝑋𝑌𝜒)))
91, 2, 8mpbir2and 712 . 2 (𝜑𝑌 ∈ {𝑥 ∣ (𝑋𝑥𝜓)})
10 intss1 4854 . 2 (𝑌 ∈ {𝑥 ∣ (𝑋𝑥𝜓)} → {𝑥 ∣ (𝑋𝑥𝜓)} ⊆ 𝑌)
119, 10syl 17 1 (𝜑 {𝑥 ∣ (𝑋𝑥𝜓)} ⊆ 𝑌)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 209   ∧ wa 399   = wceq 1538   ∈ wcel 2111  {cab 2776  Vcvv 3441   ⊆ wss 3881  ∩ cint 4839 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-v 3443  df-in 3888  df-ss 3898  df-int 4840 This theorem is referenced by:  mptrcllem  40356  trclubgNEW  40361
 Copyright terms: Public domain W3C validator