Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cleq2lem Structured version   Visualization version   GIF version

Theorem cleq2lem 41589
Description: Equality implies bijection. (Contributed by RP, 24-Jul-2020.)
Hypothesis
Ref Expression
cleq2lem.b (𝐴 = 𝐵 → (𝜑𝜓))
Assertion
Ref Expression
cleq2lem (𝐴 = 𝐵 → ((𝑅𝐴𝜑) ↔ (𝑅𝐵𝜓)))

Proof of Theorem cleq2lem
StepHypRef Expression
1 sseq2 3958 . 2 (𝐴 = 𝐵 → (𝑅𝐴𝑅𝐵))
2 cleq2lem.b . 2 (𝐴 = 𝐵 → (𝜑𝜓))
31, 2anbi12d 631 1 (𝐴 = 𝐵 → ((𝑅𝐴𝜑) ↔ (𝑅𝐵𝜓)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1540  wss 3898
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-ext 2707
This theorem depends on definitions:  df-bi 206  df-an 397  df-tru 1543  df-ex 1781  df-sb 2067  df-clab 2714  df-cleq 2728  df-clel 2814  df-v 3443  df-in 3905  df-ss 3915
This theorem is referenced by:  cbvcllem  41590  clublem  41591  rclexi  41596  rtrclex  41598  rtrclexi  41602  clrellem  41603  clcnvlem  41604  trcleq2lemRP  41611  dfrcl2  41655  brtrclfv2  41708  clsk1indlem1  42028
  Copyright terms: Public domain W3C validator