| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > cleq2lem | Structured version Visualization version GIF version | ||
| Description: Equality implies bijection. (Contributed by RP, 24-Jul-2020.) |
| Ref | Expression |
|---|---|
| cleq2lem.b | ⊢ (𝐴 = 𝐵 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| cleq2lem | ⊢ (𝐴 = 𝐵 → ((𝑅 ⊆ 𝐴 ∧ 𝜑) ↔ (𝑅 ⊆ 𝐵 ∧ 𝜓))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sseq2 3985 | . 2 ⊢ (𝐴 = 𝐵 → (𝑅 ⊆ 𝐴 ↔ 𝑅 ⊆ 𝐵)) | |
| 2 | cleq2lem.b | . 2 ⊢ (𝐴 = 𝐵 → (𝜑 ↔ 𝜓)) | |
| 3 | 1, 2 | anbi12d 632 | 1 ⊢ (𝐴 = 𝐵 → ((𝑅 ⊆ 𝐴 ∧ 𝜑) ↔ (𝑅 ⊆ 𝐵 ∧ 𝜓))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ⊆ wss 3926 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2727 df-ss 3943 |
| This theorem is referenced by: cbvcllem 43633 clublem 43634 rclexi 43639 rtrclex 43641 rtrclexi 43645 clrellem 43646 clcnvlem 43647 trcleq2lemRP 43654 dfrcl2 43698 brtrclfv2 43751 clsk1indlem1 44069 |
| Copyright terms: Public domain | W3C validator |