![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > cleq2lem | Structured version Visualization version GIF version |
Description: Equality implies bijection. (Contributed by RP, 24-Jul-2020.) |
Ref | Expression |
---|---|
cleq2lem.b | ⊢ (𝐴 = 𝐵 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
cleq2lem | ⊢ (𝐴 = 𝐵 → ((𝑅 ⊆ 𝐴 ∧ 𝜑) ↔ (𝑅 ⊆ 𝐵 ∧ 𝜓))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sseq2 3877 | . 2 ⊢ (𝐴 = 𝐵 → (𝑅 ⊆ 𝐴 ↔ 𝑅 ⊆ 𝐵)) | |
2 | cleq2lem.b | . 2 ⊢ (𝐴 = 𝐵 → (𝜑 ↔ 𝜓)) | |
3 | 1, 2 | anbi12d 621 | 1 ⊢ (𝐴 = 𝐵 → ((𝑅 ⊆ 𝐴 ∧ 𝜑) ↔ (𝑅 ⊆ 𝐵 ∧ 𝜓))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ wa 387 = wceq 1507 ⊆ wss 3823 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1965 ax-8 2052 ax-9 2059 ax-10 2079 ax-11 2093 ax-12 2106 ax-ext 2744 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-tru 1510 df-ex 1743 df-nf 1747 df-sb 2016 df-clab 2753 df-cleq 2765 df-clel 2840 df-in 3830 df-ss 3837 |
This theorem is referenced by: cbvcllem 39360 clublem 39362 rclexi 39367 rtrclex 39369 rtrclexi 39373 clrellem 39374 clcnvlem 39375 trcleq2lemRP 39382 dfrcl2 39411 brtrclfv2 39464 clsk1indlem1 39787 |
Copyright terms: Public domain | W3C validator |