Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cleq2lem Structured version   Visualization version   GIF version

Theorem cleq2lem 41216
Description: Equality implies bijection. (Contributed by RP, 24-Jul-2020.)
Hypothesis
Ref Expression
cleq2lem.b (𝐴 = 𝐵 → (𝜑𝜓))
Assertion
Ref Expression
cleq2lem (𝐴 = 𝐵 → ((𝑅𝐴𝜑) ↔ (𝑅𝐵𝜓)))

Proof of Theorem cleq2lem
StepHypRef Expression
1 sseq2 3947 . 2 (𝐴 = 𝐵 → (𝑅𝐴𝑅𝐵))
2 cleq2lem.b . 2 (𝐴 = 𝐵 → (𝜑𝜓))
31, 2anbi12d 631 1 (𝐴 = 𝐵 → ((𝑅𝐴𝜑) ↔ (𝑅𝐵𝜓)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1539  wss 3887
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-tru 1542  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-v 3434  df-in 3894  df-ss 3904
This theorem is referenced by:  cbvcllem  41217  clublem  41218  rclexi  41223  rtrclex  41225  rtrclexi  41229  clrellem  41230  clcnvlem  41231  trcleq2lemRP  41238  dfrcl2  41282  brtrclfv2  41335  clsk1indlem1  41655
  Copyright terms: Public domain W3C validator