| Mathbox for Gino Giotto |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > cbvdisjdavw | Structured version Visualization version GIF version | ||
| Description: Change bound variable in a disjoint collection. Deduction form. (Contributed by GG, 14-Aug-2025.) |
| Ref | Expression |
|---|---|
| cbvdisjdavw.1 | ⊢ ((𝜑 ∧ 𝑥 = 𝑦) → 𝐵 = 𝐶) |
| Ref | Expression |
|---|---|
| cbvdisjdavw | ⊢ (𝜑 → (Disj 𝑥 ∈ 𝐴 𝐵 ↔ Disj 𝑦 ∈ 𝐴 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cbvdisjdavw.1 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 = 𝑦) → 𝐵 = 𝐶) | |
| 2 | 1 | eleq2d 2815 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 = 𝑦) → (𝑡 ∈ 𝐵 ↔ 𝑡 ∈ 𝐶)) |
| 3 | 2 | cbvrmodavw 36235 | . . 3 ⊢ (𝜑 → (∃*𝑥 ∈ 𝐴 𝑡 ∈ 𝐵 ↔ ∃*𝑦 ∈ 𝐴 𝑡 ∈ 𝐶)) |
| 4 | 3 | albidv 1920 | . 2 ⊢ (𝜑 → (∀𝑡∃*𝑥 ∈ 𝐴 𝑡 ∈ 𝐵 ↔ ∀𝑡∃*𝑦 ∈ 𝐴 𝑡 ∈ 𝐶)) |
| 5 | df-disj 5077 | . 2 ⊢ (Disj 𝑥 ∈ 𝐴 𝐵 ↔ ∀𝑡∃*𝑥 ∈ 𝐴 𝑡 ∈ 𝐵) | |
| 6 | df-disj 5077 | . 2 ⊢ (Disj 𝑦 ∈ 𝐴 𝐶 ↔ ∀𝑡∃*𝑦 ∈ 𝐴 𝑡 ∈ 𝐶) | |
| 7 | 4, 5, 6 | 3bitr4g 314 | 1 ⊢ (𝜑 → (Disj 𝑥 ∈ 𝐴 𝐵 ↔ Disj 𝑦 ∈ 𝐴 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∀wal 1538 = wceq 1540 ∈ wcel 2109 ∃*wrmo 3355 Disj wdisj 5076 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-mo 2534 df-cleq 2722 df-clel 2804 df-rmo 3356 df-disj 5077 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |