| Mathbox for Gino Giotto |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > cbviotadavw | Structured version Visualization version GIF version | ||
| Description: Change bound variable in a description binder. Deduction form. (Contributed by GG, 14-Aug-2025.) |
| Ref | Expression |
|---|---|
| cbviotadavw.1 | ⊢ ((𝜑 ∧ 𝑥 = 𝑦) → (𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| cbviotadavw | ⊢ (𝜑 → (℩𝑥𝜓) = (℩𝑦𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cbviotadavw.1 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 = 𝑦) → (𝜓 ↔ 𝜒)) | |
| 2 | 1 | cbvabdavw 36239 | . . . . 5 ⊢ (𝜑 → {𝑥 ∣ 𝜓} = {𝑦 ∣ 𝜒}) |
| 3 | 2 | eqeq1d 2732 | . . . 4 ⊢ (𝜑 → ({𝑥 ∣ 𝜓} = {𝑡} ↔ {𝑦 ∣ 𝜒} = {𝑡})) |
| 4 | 3 | abbidv 2796 | . . 3 ⊢ (𝜑 → {𝑡 ∣ {𝑥 ∣ 𝜓} = {𝑡}} = {𝑡 ∣ {𝑦 ∣ 𝜒} = {𝑡}}) |
| 5 | 4 | unieqd 4886 | . 2 ⊢ (𝜑 → ∪ {𝑡 ∣ {𝑥 ∣ 𝜓} = {𝑡}} = ∪ {𝑡 ∣ {𝑦 ∣ 𝜒} = {𝑡}}) |
| 6 | df-iota 6466 | . 2 ⊢ (℩𝑥𝜓) = ∪ {𝑡 ∣ {𝑥 ∣ 𝜓} = {𝑡}} | |
| 7 | df-iota 6466 | . 2 ⊢ (℩𝑦𝜒) = ∪ {𝑡 ∣ {𝑦 ∣ 𝜒} = {𝑡}} | |
| 8 | 5, 6, 7 | 3eqtr4g 2790 | 1 ⊢ (𝜑 → (℩𝑥𝜓) = (℩𝑦𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 {cab 2708 {csn 4591 ∪ cuni 4873 ℩cio 6464 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-v 3452 df-ss 3933 df-uni 4874 df-iota 6466 |
| This theorem is referenced by: cbvriotadavw 36253 cbvriotadavw2 36273 |
| Copyright terms: Public domain | W3C validator |