| Mathbox for Gino Giotto |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > cbvmptdavw | Structured version Visualization version GIF version | ||
| Description: Change bound variable in a maps-to function. Deduction form. (Contributed by GG, 14-Aug-2025.) |
| Ref | Expression |
|---|---|
| cbvmptdavw.1 | ⊢ ((𝜑 ∧ 𝑥 = 𝑦) → 𝐵 = 𝐶) |
| Ref | Expression |
|---|---|
| cbvmptdavw | ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑦 ∈ 𝐴 ↦ 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq1w 2814 | . . . . 5 ⊢ (𝑥 = 𝑦 → (𝑥 ∈ 𝐴 ↔ 𝑦 ∈ 𝐴)) | |
| 2 | 1 | adantl 481 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 = 𝑦) → (𝑥 ∈ 𝐴 ↔ 𝑦 ∈ 𝐴)) |
| 3 | cbvmptdavw.1 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 = 𝑦) → 𝐵 = 𝐶) | |
| 4 | 3 | eqeq2d 2742 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 = 𝑦) → (𝑡 = 𝐵 ↔ 𝑡 = 𝐶)) |
| 5 | 2, 4 | anbi12d 632 | . . 3 ⊢ ((𝜑 ∧ 𝑥 = 𝑦) → ((𝑥 ∈ 𝐴 ∧ 𝑡 = 𝐵) ↔ (𝑦 ∈ 𝐴 ∧ 𝑡 = 𝐶))) |
| 6 | 5 | cbvopab1davw 36298 | . 2 ⊢ (𝜑 → {〈𝑥, 𝑡〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑡 = 𝐵)} = {〈𝑦, 𝑡〉 ∣ (𝑦 ∈ 𝐴 ∧ 𝑡 = 𝐶)}) |
| 7 | df-mpt 5168 | . 2 ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = {〈𝑥, 𝑡〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑡 = 𝐵)} | |
| 8 | df-mpt 5168 | . 2 ⊢ (𝑦 ∈ 𝐴 ↦ 𝐶) = {〈𝑦, 𝑡〉 ∣ (𝑦 ∈ 𝐴 ∧ 𝑡 = 𝐶)} | |
| 9 | 6, 7, 8 | 3eqtr4g 2791 | 1 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑦 ∈ 𝐴 ↦ 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2111 {copab 5148 ↦ cmpt 5167 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4279 df-if 4471 df-sn 4572 df-pr 4574 df-op 4578 df-opab 5149 df-mpt 5168 |
| This theorem is referenced by: cbvproddavw 36314 cbvitgdavw 36315 cbvproddavw2 36330 cbvitgdavw2 36331 |
| Copyright terms: Public domain | W3C validator |