![]() |
Mathbox for Gino Giotto |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > cbvmptdavw | Structured version Visualization version GIF version |
Description: Change bound variable in a maps-to function. Deduction form. (Contributed by GG, 14-Aug-2025.) |
Ref | Expression |
---|---|
cbvmptdavw.1 | ⊢ ((𝜑 ∧ 𝑥 = 𝑦) → 𝐵 = 𝐶) |
Ref | Expression |
---|---|
cbvmptdavw | ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑦 ∈ 𝐴 ↦ 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq1w 2827 | . . . . 5 ⊢ (𝑥 = 𝑦 → (𝑥 ∈ 𝐴 ↔ 𝑦 ∈ 𝐴)) | |
2 | 1 | adantl 481 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 = 𝑦) → (𝑥 ∈ 𝐴 ↔ 𝑦 ∈ 𝐴)) |
3 | cbvmptdavw.1 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 = 𝑦) → 𝐵 = 𝐶) | |
4 | 3 | eqeq2d 2751 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 = 𝑦) → (𝑡 = 𝐵 ↔ 𝑡 = 𝐶)) |
5 | 2, 4 | anbi12d 631 | . . 3 ⊢ ((𝜑 ∧ 𝑥 = 𝑦) → ((𝑥 ∈ 𝐴 ∧ 𝑡 = 𝐵) ↔ (𝑦 ∈ 𝐴 ∧ 𝑡 = 𝐶))) |
6 | 5 | cbvopab1davw 36222 | . 2 ⊢ (𝜑 → {〈𝑥, 𝑡〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑡 = 𝐵)} = {〈𝑦, 𝑡〉 ∣ (𝑦 ∈ 𝐴 ∧ 𝑡 = 𝐶)}) |
7 | df-mpt 5250 | . 2 ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = {〈𝑥, 𝑡〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑡 = 𝐵)} | |
8 | df-mpt 5250 | . 2 ⊢ (𝑦 ∈ 𝐴 ↦ 𝐶) = {〈𝑦, 𝑡〉 ∣ (𝑦 ∈ 𝐴 ∧ 𝑡 = 𝐶)} | |
9 | 6, 7, 8 | 3eqtr4g 2805 | 1 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑦 ∈ 𝐴 ↦ 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2108 {copab 5228 ↦ cmpt 5249 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-opab 5229 df-mpt 5250 |
This theorem is referenced by: cbvproddavw 36238 cbvitgdavw 36239 cbvproddavw2 36254 cbvitgdavw2 36255 |
Copyright terms: Public domain | W3C validator |