Users' Mathboxes Mathbox for Gino Giotto < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cbvmptdavw Structured version   Visualization version   GIF version

Theorem cbvmptdavw 36206
Description: Change bound variable in a maps-to function. Deduction form. (Contributed by GG, 14-Aug-2025.)
Hypothesis
Ref Expression
cbvmptdavw.1 ((𝜑𝑥 = 𝑦) → 𝐵 = 𝐶)
Assertion
Ref Expression
cbvmptdavw (𝜑 → (𝑥𝐴𝐵) = (𝑦𝐴𝐶))
Distinct variable groups:   𝜑,𝑥,𝑦   𝑥,𝐴,𝑦   𝑦,𝐵   𝑥,𝐶
Allowed substitution hints:   𝐵(𝑥)   𝐶(𝑦)

Proof of Theorem cbvmptdavw
Dummy variable 𝑡 is distinct from all other variables.
StepHypRef Expression
1 eleq1w 2816 . . . . 5 (𝑥 = 𝑦 → (𝑥𝐴𝑦𝐴))
21adantl 481 . . . 4 ((𝜑𝑥 = 𝑦) → (𝑥𝐴𝑦𝐴))
3 cbvmptdavw.1 . . . . 5 ((𝜑𝑥 = 𝑦) → 𝐵 = 𝐶)
43eqeq2d 2745 . . . 4 ((𝜑𝑥 = 𝑦) → (𝑡 = 𝐵𝑡 = 𝐶))
52, 4anbi12d 632 . . 3 ((𝜑𝑥 = 𝑦) → ((𝑥𝐴𝑡 = 𝐵) ↔ (𝑦𝐴𝑡 = 𝐶)))
65cbvopab1davw 36203 . 2 (𝜑 → {⟨𝑥, 𝑡⟩ ∣ (𝑥𝐴𝑡 = 𝐵)} = {⟨𝑦, 𝑡⟩ ∣ (𝑦𝐴𝑡 = 𝐶)})
7 df-mpt 5199 . 2 (𝑥𝐴𝐵) = {⟨𝑥, 𝑡⟩ ∣ (𝑥𝐴𝑡 = 𝐵)}
8 df-mpt 5199 . 2 (𝑦𝐴𝐶) = {⟨𝑦, 𝑡⟩ ∣ (𝑦𝐴𝑡 = 𝐶)}
96, 7, 83eqtr4g 2794 1 (𝜑 → (𝑥𝐴𝐵) = (𝑦𝐴𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1539  wcel 2107  {copab 5178  cmpt 5198
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-ext 2706
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-sb 2064  df-clab 2713  df-cleq 2726  df-clel 2808  df-rab 3414  df-v 3459  df-dif 3927  df-un 3929  df-ss 3941  df-nul 4307  df-if 4499  df-sn 4600  df-pr 4602  df-op 4606  df-opab 5179  df-mpt 5199
This theorem is referenced by:  cbvproddavw  36219  cbvitgdavw  36220  cbvproddavw2  36235  cbvitgdavw2  36236
  Copyright terms: Public domain W3C validator