MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-disj Structured version   Visualization version   GIF version

Definition df-disj 5063
Description: A collection of classes 𝐵(𝑥) is disjoint when for each element 𝑦, it is in 𝐵(𝑥) for at most one 𝑥. (Contributed by Mario Carneiro, 14-Nov-2016.) (Revised by NM, 16-Jun-2017.)
Assertion
Ref Expression
df-disj (Disj 𝑥𝐴 𝐵 ↔ ∀𝑦∃*𝑥𝐴 𝑦𝐵)
Distinct variable groups:   𝑥,𝑦   𝑦,𝐴   𝑦,𝐵
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)

Detailed syntax breakdown of Definition df-disj
StepHypRef Expression
1 vx . . 3 setvar 𝑥
2 cA . . 3 class 𝐴
3 cB . . 3 class 𝐵
41, 2, 3wdisj 5062 . 2 wff Disj 𝑥𝐴 𝐵
5 vy . . . . . 6 setvar 𝑦
65cv 1540 . . . . 5 class 𝑦
76, 3wcel 2113 . . . 4 wff 𝑦𝐵
87, 1, 2wrmo 3346 . . 3 wff ∃*𝑥𝐴 𝑦𝐵
98, 5wal 1539 . 2 wff 𝑦∃*𝑥𝐴 𝑦𝐵
104, 9wb 206 1 wff (Disj 𝑥𝐴 𝐵 ↔ ∀𝑦∃*𝑥𝐴 𝑦𝐵)
Colors of variables: wff setvar class
This definition is referenced by:  dfdisj2  5064  disjss2  5065  cbvdisj  5072  cbvdisjv  5073  nfdisj1  5076  disjor  5077  disjiun  5083  cbvdisjf  32555  disjss1f  32556  disjxun0  32558  disjorf  32563  disjin  32570  disjin2  32571  disjrdx  32575  ddemeas  34272  disjeq1i  36259  disjeq12dv  36282  cbvdisjvw2  36302  cbvdisjdavw  36335  cbvdisjdavw2  36356  iccpartdisj  47564
  Copyright terms: Public domain W3C validator