| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-disj | Structured version Visualization version GIF version | ||
| Description: A collection of classes 𝐵(𝑥) is disjoint when for each element 𝑦, it is in 𝐵(𝑥) for at most one 𝑥. (Contributed by Mario Carneiro, 14-Nov-2016.) (Revised by NM, 16-Jun-2017.) |
| Ref | Expression |
|---|---|
| df-disj | ⊢ (Disj 𝑥 ∈ 𝐴 𝐵 ↔ ∀𝑦∃*𝑥 ∈ 𝐴 𝑦 ∈ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vx | . . 3 setvar 𝑥 | |
| 2 | cA | . . 3 class 𝐴 | |
| 3 | cB | . . 3 class 𝐵 | |
| 4 | 1, 2, 3 | wdisj 5062 | . 2 wff Disj 𝑥 ∈ 𝐴 𝐵 |
| 5 | vy | . . . . . 6 setvar 𝑦 | |
| 6 | 5 | cv 1539 | . . . . 5 class 𝑦 |
| 7 | 6, 3 | wcel 2109 | . . . 4 wff 𝑦 ∈ 𝐵 |
| 8 | 7, 1, 2 | wrmo 3344 | . . 3 wff ∃*𝑥 ∈ 𝐴 𝑦 ∈ 𝐵 |
| 9 | 8, 5 | wal 1538 | . 2 wff ∀𝑦∃*𝑥 ∈ 𝐴 𝑦 ∈ 𝐵 |
| 10 | 4, 9 | wb 206 | 1 wff (Disj 𝑥 ∈ 𝐴 𝐵 ↔ ∀𝑦∃*𝑥 ∈ 𝐴 𝑦 ∈ 𝐵) |
| Colors of variables: wff setvar class |
| This definition is referenced by: dfdisj2 5064 disjss2 5065 cbvdisj 5072 cbvdisjv 5073 nfdisj1 5076 disjor 5077 disjiun 5083 cbvdisjf 32533 disjss1f 32534 disjxun0 32536 disjorf 32541 disjin 32548 disjin2 32549 disjrdx 32553 ddemeas 34205 disjeq1i 36168 disjeq12dv 36191 cbvdisjvw2 36211 cbvdisjdavw 36244 cbvdisjdavw2 36265 iccpartdisj 47425 |
| Copyright terms: Public domain | W3C validator |