MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-disj Structured version   Visualization version   GIF version

Definition df-disj 5087
Description: A collection of classes 𝐵(𝑥) is disjoint when for each element 𝑦, it is in 𝐵(𝑥) for at most one 𝑥. (Contributed by Mario Carneiro, 14-Nov-2016.) (Revised by NM, 16-Jun-2017.)
Assertion
Ref Expression
df-disj (Disj 𝑥𝐴 𝐵 ↔ ∀𝑦∃*𝑥𝐴 𝑦𝐵)
Distinct variable groups:   𝑥,𝑦   𝑦,𝐴   𝑦,𝐵
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)

Detailed syntax breakdown of Definition df-disj
StepHypRef Expression
1 vx . . 3 setvar 𝑥
2 cA . . 3 class 𝐴
3 cB . . 3 class 𝐵
41, 2, 3wdisj 5086 . 2 wff Disj 𝑥𝐴 𝐵
5 vy . . . . . 6 setvar 𝑦
65cv 1539 . . . . 5 class 𝑦
76, 3wcel 2108 . . . 4 wff 𝑦𝐵
87, 1, 2wrmo 3358 . . 3 wff ∃*𝑥𝐴 𝑦𝐵
98, 5wal 1538 . 2 wff 𝑦∃*𝑥𝐴 𝑦𝐵
104, 9wb 206 1 wff (Disj 𝑥𝐴 𝐵 ↔ ∀𝑦∃*𝑥𝐴 𝑦𝐵)
Colors of variables: wff setvar class
This definition is referenced by:  dfdisj2  5088  disjss2  5089  cbvdisj  5096  cbvdisjv  5097  nfdisj1  5100  disjor  5101  disjiun  5107  cbvdisjf  32498  disjss1f  32499  disjxun0  32501  disjorf  32506  disjin  32513  disjin2  32514  disjrdx  32518  ddemeas  34213  disjeq1i  36156  disjeq12dv  36179  cbvdisjvw2  36199  cbvdisjdavw  36232  cbvdisjdavw2  36253  iccpartdisj  47399
  Copyright terms: Public domain W3C validator