MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-disj Structured version   Visualization version   GIF version

Definition df-disj 5134
Description: A collection of classes 𝐵(𝑥) is disjoint when for each element 𝑦, it is in 𝐵(𝑥) for at most one 𝑥. (Contributed by Mario Carneiro, 14-Nov-2016.) (Revised by NM, 16-Jun-2017.)
Assertion
Ref Expression
df-disj (Disj 𝑥𝐴 𝐵 ↔ ∀𝑦∃*𝑥𝐴 𝑦𝐵)
Distinct variable groups:   𝑥,𝑦   𝑦,𝐴   𝑦,𝐵
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)

Detailed syntax breakdown of Definition df-disj
StepHypRef Expression
1 vx . . 3 setvar 𝑥
2 cA . . 3 class 𝐴
3 cB . . 3 class 𝐵
41, 2, 3wdisj 5133 . 2 wff Disj 𝑥𝐴 𝐵
5 vy . . . . . 6 setvar 𝑦
65cv 1536 . . . . 5 class 𝑦
76, 3wcel 2108 . . . 4 wff 𝑦𝐵
87, 1, 2wrmo 3387 . . 3 wff ∃*𝑥𝐴 𝑦𝐵
98, 5wal 1535 . 2 wff 𝑦∃*𝑥𝐴 𝑦𝐵
104, 9wb 206 1 wff (Disj 𝑥𝐴 𝐵 ↔ ∀𝑦∃*𝑥𝐴 𝑦𝐵)
Colors of variables: wff setvar class
This definition is referenced by:  dfdisj2  5135  disjss2  5136  cbvdisj  5143  cbvdisjv  5144  nfdisj1  5147  disjor  5148  disjiun  5154  cbvdisjf  32593  disjss1f  32594  disjxun0  32596  disjorf  32601  disjin  32608  disjin2  32609  disjrdx  32613  ddemeas  34200  disjeq1i  36156  disjeq12dv  36181  cbvdisjvw2  36201  cbvdisjdavw  36234  cbvdisjdavw2  36255  iccpartdisj  47311
  Copyright terms: Public domain W3C validator