| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-disj | Structured version Visualization version GIF version | ||
| Description: A collection of classes 𝐵(𝑥) is disjoint when for each element 𝑦, it is in 𝐵(𝑥) for at most one 𝑥. (Contributed by Mario Carneiro, 14-Nov-2016.) (Revised by NM, 16-Jun-2017.) |
| Ref | Expression |
|---|---|
| df-disj | ⊢ (Disj 𝑥 ∈ 𝐴 𝐵 ↔ ∀𝑦∃*𝑥 ∈ 𝐴 𝑦 ∈ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vx | . . 3 setvar 𝑥 | |
| 2 | cA | . . 3 class 𝐴 | |
| 3 | cB | . . 3 class 𝐵 | |
| 4 | 1, 2, 3 | wdisj 5077 | . 2 wff Disj 𝑥 ∈ 𝐴 𝐵 |
| 5 | vy | . . . . . 6 setvar 𝑦 | |
| 6 | 5 | cv 1539 | . . . . 5 class 𝑦 |
| 7 | 6, 3 | wcel 2109 | . . . 4 wff 𝑦 ∈ 𝐵 |
| 8 | 7, 1, 2 | wrmo 3355 | . . 3 wff ∃*𝑥 ∈ 𝐴 𝑦 ∈ 𝐵 |
| 9 | 8, 5 | wal 1538 | . 2 wff ∀𝑦∃*𝑥 ∈ 𝐴 𝑦 ∈ 𝐵 |
| 10 | 4, 9 | wb 206 | 1 wff (Disj 𝑥 ∈ 𝐴 𝐵 ↔ ∀𝑦∃*𝑥 ∈ 𝐴 𝑦 ∈ 𝐵) |
| Colors of variables: wff setvar class |
| This definition is referenced by: dfdisj2 5079 disjss2 5080 cbvdisj 5087 cbvdisjv 5088 nfdisj1 5091 disjor 5092 disjiun 5098 cbvdisjf 32507 disjss1f 32508 disjxun0 32510 disjorf 32515 disjin 32522 disjin2 32523 disjrdx 32527 ddemeas 34233 disjeq1i 36187 disjeq12dv 36210 cbvdisjvw2 36230 cbvdisjdavw 36263 cbvdisjdavw2 36284 iccpartdisj 47442 |
| Copyright terms: Public domain | W3C validator |