MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-disj Structured version   Visualization version   GIF version

Definition df-disj 5059
Description: A collection of classes 𝐵(𝑥) is disjoint when for each element 𝑦, it is in 𝐵(𝑥) for at most one 𝑥. (Contributed by Mario Carneiro, 14-Nov-2016.) (Revised by NM, 16-Jun-2017.)
Assertion
Ref Expression
df-disj (Disj 𝑥𝐴 𝐵 ↔ ∀𝑦∃*𝑥𝐴 𝑦𝐵)
Distinct variable groups:   𝑥,𝑦   𝑦,𝐴   𝑦,𝐵
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)

Detailed syntax breakdown of Definition df-disj
StepHypRef Expression
1 vx . . 3 setvar 𝑥
2 cA . . 3 class 𝐴
3 cB . . 3 class 𝐵
41, 2, 3wdisj 5058 . 2 wff Disj 𝑥𝐴 𝐵
5 vy . . . . . 6 setvar 𝑦
65cv 1540 . . . . 5 class 𝑦
76, 3wcel 2111 . . . 4 wff 𝑦𝐵
87, 1, 2wrmo 3345 . . 3 wff ∃*𝑥𝐴 𝑦𝐵
98, 5wal 1539 . 2 wff 𝑦∃*𝑥𝐴 𝑦𝐵
104, 9wb 206 1 wff (Disj 𝑥𝐴 𝐵 ↔ ∀𝑦∃*𝑥𝐴 𝑦𝐵)
Colors of variables: wff setvar class
This definition is referenced by:  dfdisj2  5060  disjss2  5061  cbvdisj  5068  cbvdisjv  5069  nfdisj1  5072  disjor  5073  disjiun  5079  cbvdisjf  32549  disjss1f  32550  disjxun0  32552  disjorf  32557  disjin  32564  disjin2  32565  disjrdx  32569  ddemeas  34247  disjeq1i  36232  disjeq12dv  36255  cbvdisjvw2  36275  cbvdisjdavw  36308  cbvdisjdavw2  36329  iccpartdisj  47474
  Copyright terms: Public domain W3C validator