![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > df-disj | Structured version Visualization version GIF version |
Description: A collection of classes 𝐵(𝑥) is disjoint when for each element 𝑦, it is in 𝐵(𝑥) for at most one 𝑥. (Contributed by Mario Carneiro, 14-Nov-2016.) (Revised by NM, 16-Jun-2017.) |
Ref | Expression |
---|---|
df-disj | ⊢ (Disj 𝑥 ∈ 𝐴 𝐵 ↔ ∀𝑦∃*𝑥 ∈ 𝐴 𝑦 ∈ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vx | . . 3 setvar 𝑥 | |
2 | cA | . . 3 class 𝐴 | |
3 | cB | . . 3 class 𝐵 | |
4 | 1, 2, 3 | wdisj 5133 | . 2 wff Disj 𝑥 ∈ 𝐴 𝐵 |
5 | vy | . . . . . 6 setvar 𝑦 | |
6 | 5 | cv 1536 | . . . . 5 class 𝑦 |
7 | 6, 3 | wcel 2108 | . . . 4 wff 𝑦 ∈ 𝐵 |
8 | 7, 1, 2 | wrmo 3387 | . . 3 wff ∃*𝑥 ∈ 𝐴 𝑦 ∈ 𝐵 |
9 | 8, 5 | wal 1535 | . 2 wff ∀𝑦∃*𝑥 ∈ 𝐴 𝑦 ∈ 𝐵 |
10 | 4, 9 | wb 206 | 1 wff (Disj 𝑥 ∈ 𝐴 𝐵 ↔ ∀𝑦∃*𝑥 ∈ 𝐴 𝑦 ∈ 𝐵) |
Colors of variables: wff setvar class |
This definition is referenced by: dfdisj2 5135 disjss2 5136 cbvdisj 5143 cbvdisjv 5144 nfdisj1 5147 disjor 5148 disjiun 5154 cbvdisjf 32593 disjss1f 32594 disjxun0 32596 disjorf 32601 disjin 32608 disjin2 32609 disjrdx 32613 ddemeas 34200 disjeq1i 36156 disjeq12dv 36181 cbvdisjvw2 36201 cbvdisjdavw 36234 cbvdisjdavw2 36255 iccpartdisj 47311 |
Copyright terms: Public domain | W3C validator |