MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-disj Structured version   Visualization version   GIF version

Definition df-disj 5113
Description: A collection of classes 𝐵(𝑥) is disjoint when for each element 𝑦, it is in 𝐵(𝑥) for at most one 𝑥. (Contributed by Mario Carneiro, 14-Nov-2016.) (Revised by NM, 16-Jun-2017.)
Assertion
Ref Expression
df-disj (Disj 𝑥𝐴 𝐵 ↔ ∀𝑦∃*𝑥𝐴 𝑦𝐵)
Distinct variable groups:   𝑥,𝑦   𝑦,𝐴   𝑦,𝐵
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)

Detailed syntax breakdown of Definition df-disj
StepHypRef Expression
1 vx . . 3 setvar 𝑥
2 cA . . 3 class 𝐴
3 cB . . 3 class 𝐵
41, 2, 3wdisj 5112 . 2 wff Disj 𝑥𝐴 𝐵
5 vy . . . . . 6 setvar 𝑦
65cv 1538 . . . . 5 class 𝑦
76, 3wcel 2104 . . . 4 wff 𝑦𝐵
87, 1, 2wrmo 3373 . . 3 wff ∃*𝑥𝐴 𝑦𝐵
98, 5wal 1537 . 2 wff 𝑦∃*𝑥𝐴 𝑦𝐵
104, 9wb 205 1 wff (Disj 𝑥𝐴 𝐵 ↔ ∀𝑦∃*𝑥𝐴 𝑦𝐵)
Colors of variables: wff setvar class
This definition is referenced by:  dfdisj2  5114  disjss2  5115  cbvdisj  5122  nfdisj1  5126  disjor  5127  disjiun  5134  cbvdisjf  32069  disjss1f  32070  disjxun0  32072  disjorf  32077  disjin  32084  disjin2  32085  disjrdx  32089  ddemeas  33532  iccpartdisj  46403
  Copyright terms: Public domain W3C validator