| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-disj | Structured version Visualization version GIF version | ||
| Description: A collection of classes 𝐵(𝑥) is disjoint when for each element 𝑦, it is in 𝐵(𝑥) for at most one 𝑥. (Contributed by Mario Carneiro, 14-Nov-2016.) (Revised by NM, 16-Jun-2017.) |
| Ref | Expression |
|---|---|
| df-disj | ⊢ (Disj 𝑥 ∈ 𝐴 𝐵 ↔ ∀𝑦∃*𝑥 ∈ 𝐴 𝑦 ∈ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vx | . . 3 setvar 𝑥 | |
| 2 | cA | . . 3 class 𝐴 | |
| 3 | cB | . . 3 class 𝐵 | |
| 4 | 1, 2, 3 | wdisj 5086 | . 2 wff Disj 𝑥 ∈ 𝐴 𝐵 |
| 5 | vy | . . . . . 6 setvar 𝑦 | |
| 6 | 5 | cv 1539 | . . . . 5 class 𝑦 |
| 7 | 6, 3 | wcel 2108 | . . . 4 wff 𝑦 ∈ 𝐵 |
| 8 | 7, 1, 2 | wrmo 3358 | . . 3 wff ∃*𝑥 ∈ 𝐴 𝑦 ∈ 𝐵 |
| 9 | 8, 5 | wal 1538 | . 2 wff ∀𝑦∃*𝑥 ∈ 𝐴 𝑦 ∈ 𝐵 |
| 10 | 4, 9 | wb 206 | 1 wff (Disj 𝑥 ∈ 𝐴 𝐵 ↔ ∀𝑦∃*𝑥 ∈ 𝐴 𝑦 ∈ 𝐵) |
| Colors of variables: wff setvar class |
| This definition is referenced by: dfdisj2 5088 disjss2 5089 cbvdisj 5096 cbvdisjv 5097 nfdisj1 5100 disjor 5101 disjiun 5107 cbvdisjf 32498 disjss1f 32499 disjxun0 32501 disjorf 32506 disjin 32513 disjin2 32514 disjrdx 32518 ddemeas 34213 disjeq1i 36156 disjeq12dv 36179 cbvdisjvw2 36199 cbvdisjdavw 36232 cbvdisjdavw2 36253 iccpartdisj 47399 |
| Copyright terms: Public domain | W3C validator |