Users' Mathboxes Mathbox for Gino Giotto < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cbvriotavw2 Structured version   Visualization version   GIF version

Theorem cbvriotavw2 36219
Description: Change bound variable and domain in a restricted description binder, using implicit substitution. (Contributed by GG, 14-Aug-2025.)
Hypotheses
Ref Expression
cbvriotavw2.1 (𝑥 = 𝑦𝐴 = 𝐵)
cbvriotavw2.2 (𝑥 = 𝑦 → (𝜑𝜓))
Assertion
Ref Expression
cbvriotavw2 (𝑥𝐴 𝜑) = (𝑦𝐵 𝜓)
Distinct variable groups:   𝑥,𝑦   𝜑,𝑦   𝜓,𝑥   𝑦,𝐴   𝑥,𝐵
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑦)   𝐴(𝑥)   𝐵(𝑦)

Proof of Theorem cbvriotavw2
StepHypRef Expression
1 id 22 . . . . 5 (𝑥 = 𝑦𝑥 = 𝑦)
2 cbvriotavw2.1 . . . . 5 (𝑥 = 𝑦𝐴 = 𝐵)
31, 2eleq12d 2823 . . . 4 (𝑥 = 𝑦 → (𝑥𝐴𝑦𝐵))
4 cbvriotavw2.2 . . . 4 (𝑥 = 𝑦 → (𝜑𝜓))
53, 4anbi12d 632 . . 3 (𝑥 = 𝑦 → ((𝑥𝐴𝜑) ↔ (𝑦𝐵𝜓)))
65cbviotavw 6474 . 2 (℩𝑥(𝑥𝐴𝜑)) = (℩𝑦(𝑦𝐵𝜓))
7 df-riota 7346 . 2 (𝑥𝐴 𝜑) = (℩𝑥(𝑥𝐴𝜑))
8 df-riota 7346 . 2 (𝑦𝐵 𝜓) = (℩𝑦(𝑦𝐵𝜓))
96, 7, 83eqtr4i 2763 1 (𝑥𝐴 𝜑) = (𝑦𝐵 𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  cio 6464  crio 7345
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-v 3452  df-ss 3933  df-uni 4874  df-iota 6466  df-riota 7346
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator