Users' Mathboxes Mathbox for Gino Giotto < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cbvmptvw2 Structured version   Visualization version   GIF version

Theorem cbvmptvw2 36210
Description: Change bound variable and domain in a maps-to function, using implicit substitution. (Contributed by GG, 14-Aug-2025.)
Hypotheses
Ref Expression
cbvmptvw2.1 (𝑥 = 𝑦𝐶 = 𝐷)
cbvmptvw2.2 (𝑥 = 𝑦𝐴 = 𝐵)
Assertion
Ref Expression
cbvmptvw2 (𝑥𝐴𝐶) = (𝑦𝐵𝐷)
Distinct variable groups:   𝑥,𝑦   𝑦,𝐴   𝑥,𝐵   𝑦,𝐶   𝑥,𝐷
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑦)   𝐶(𝑥)   𝐷(𝑦)

Proof of Theorem cbvmptvw2
Dummy variable 𝑡 is distinct from all other variables.
StepHypRef Expression
1 eleq1w 2816 . . . . 5 (𝑥 = 𝑦 → (𝑥𝐴𝑦𝐴))
2 cbvmptvw2.2 . . . . . 6 (𝑥 = 𝑦𝐴 = 𝐵)
32eleq2d 2819 . . . . 5 (𝑥 = 𝑦 → (𝑦𝐴𝑦𝐵))
41, 3bitrd 279 . . . 4 (𝑥 = 𝑦 → (𝑥𝐴𝑦𝐵))
5 cbvmptvw2.1 . . . . 5 (𝑥 = 𝑦𝐶 = 𝐷)
65eqeq2d 2745 . . . 4 (𝑥 = 𝑦 → (𝑡 = 𝐶𝑡 = 𝐷))
74, 6anbi12d 632 . . 3 (𝑥 = 𝑦 → ((𝑥𝐴𝑡 = 𝐶) ↔ (𝑦𝐵𝑡 = 𝐷)))
87cbvopab1v 5201 . 2 {⟨𝑥, 𝑡⟩ ∣ (𝑥𝐴𝑡 = 𝐶)} = {⟨𝑦, 𝑡⟩ ∣ (𝑦𝐵𝑡 = 𝐷)}
9 df-mpt 5206 . 2 (𝑥𝐴𝐶) = {⟨𝑥, 𝑡⟩ ∣ (𝑥𝐴𝑡 = 𝐶)}
10 df-mpt 5206 . 2 (𝑦𝐵𝐷) = {⟨𝑦, 𝑡⟩ ∣ (𝑦𝐵𝑡 = 𝐷)}
118, 9, 103eqtr4i 2767 1 (𝑥𝐴𝐶) = (𝑦𝐵𝐷)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2107  {copab 5185  cmpt 5205
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-ext 2706
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-sb 2064  df-clab 2713  df-cleq 2726  df-clel 2808  df-rab 3420  df-v 3465  df-dif 3934  df-un 3936  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-opab 5186  df-mpt 5206
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator