![]() |
Mathbox for Gino Giotto |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > cbviindavw2 | Structured version Visualization version GIF version |
Description: Change bound variable and domain in indexed intersections. Deduction form. (Contributed by GG, 14-Aug-2025.) |
Ref | Expression |
---|---|
cbviindavw2.1 | ⊢ ((𝜑 ∧ 𝑥 = 𝑦) → 𝐶 = 𝐷) |
cbviindavw2.2 | ⊢ ((𝜑 ∧ 𝑥 = 𝑦) → 𝐴 = 𝐵) |
Ref | Expression |
---|---|
cbviindavw2 | ⊢ (𝜑 → ∩ 𝑥 ∈ 𝐴 𝐶 = ∩ 𝑦 ∈ 𝐵 𝐷) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cbviindavw2.1 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 = 𝑦) → 𝐶 = 𝐷) | |
2 | 1 | eleq2d 2830 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 = 𝑦) → (𝑡 ∈ 𝐶 ↔ 𝑡 ∈ 𝐷)) |
3 | cbviindavw2.2 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 = 𝑦) → 𝐴 = 𝐵) | |
4 | 2, 3 | cbvraldva2 3356 | . . 3 ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 𝑡 ∈ 𝐶 ↔ ∀𝑦 ∈ 𝐵 𝑡 ∈ 𝐷)) |
5 | 4 | abbidv 2811 | . 2 ⊢ (𝜑 → {𝑡 ∣ ∀𝑥 ∈ 𝐴 𝑡 ∈ 𝐶} = {𝑡 ∣ ∀𝑦 ∈ 𝐵 𝑡 ∈ 𝐷}) |
6 | df-iin 5018 | . 2 ⊢ ∩ 𝑥 ∈ 𝐴 𝐶 = {𝑡 ∣ ∀𝑥 ∈ 𝐴 𝑡 ∈ 𝐶} | |
7 | df-iin 5018 | . 2 ⊢ ∩ 𝑦 ∈ 𝐵 𝐷 = {𝑡 ∣ ∀𝑦 ∈ 𝐵 𝑡 ∈ 𝐷} | |
8 | 5, 6, 7 | 3eqtr4g 2805 | 1 ⊢ (𝜑 → ∩ 𝑥 ∈ 𝐴 𝐶 = ∩ 𝑦 ∈ 𝐵 𝐷) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 {cab 2717 ∀wral 3067 ∩ ciin 5016 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ral 3068 df-iin 5018 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |