|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > cbvraldva2 | Structured version Visualization version GIF version | ||
| Description: Rule used to change the bound variable in a restricted universal quantifier with implicit substitution which also changes the quantifier domain. Deduction form. (Contributed by David Moews, 1-May-2017.) | 
| Ref | Expression | 
|---|---|
| cbvraldva2.1 | ⊢ ((𝜑 ∧ 𝑥 = 𝑦) → (𝜓 ↔ 𝜒)) | 
| cbvraldva2.2 | ⊢ ((𝜑 ∧ 𝑥 = 𝑦) → 𝐴 = 𝐵) | 
| Ref | Expression | 
|---|---|
| cbvraldva2 | ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 𝜓 ↔ ∀𝑦 ∈ 𝐵 𝜒)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | simpr 484 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑥 = 𝑦) → 𝑥 = 𝑦) | |
| 2 | cbvraldva2.2 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑥 = 𝑦) → 𝐴 = 𝐵) | |
| 3 | 1, 2 | eleq12d 2834 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 = 𝑦) → (𝑥 ∈ 𝐴 ↔ 𝑦 ∈ 𝐵)) | 
| 4 | cbvraldva2.1 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 = 𝑦) → (𝜓 ↔ 𝜒)) | |
| 5 | 3, 4 | imbi12d 344 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 = 𝑦) → ((𝑥 ∈ 𝐴 → 𝜓) ↔ (𝑦 ∈ 𝐵 → 𝜒))) | 
| 6 | 5 | expcom 413 | . . . . . 6 ⊢ (𝑥 = 𝑦 → (𝜑 → ((𝑥 ∈ 𝐴 → 𝜓) ↔ (𝑦 ∈ 𝐵 → 𝜒)))) | 
| 7 | 6 | pm5.74d 273 | . . . . 5 ⊢ (𝑥 = 𝑦 → ((𝜑 → (𝑥 ∈ 𝐴 → 𝜓)) ↔ (𝜑 → (𝑦 ∈ 𝐵 → 𝜒)))) | 
| 8 | 7 | cbvalvw 2034 | . . . 4 ⊢ (∀𝑥(𝜑 → (𝑥 ∈ 𝐴 → 𝜓)) ↔ ∀𝑦(𝜑 → (𝑦 ∈ 𝐵 → 𝜒))) | 
| 9 | 19.21v 1938 | . . . 4 ⊢ (∀𝑥(𝜑 → (𝑥 ∈ 𝐴 → 𝜓)) ↔ (𝜑 → ∀𝑥(𝑥 ∈ 𝐴 → 𝜓))) | |
| 10 | 19.21v 1938 | . . . 4 ⊢ (∀𝑦(𝜑 → (𝑦 ∈ 𝐵 → 𝜒)) ↔ (𝜑 → ∀𝑦(𝑦 ∈ 𝐵 → 𝜒))) | |
| 11 | 8, 9, 10 | 3bitr3i 301 | . . 3 ⊢ ((𝜑 → ∀𝑥(𝑥 ∈ 𝐴 → 𝜓)) ↔ (𝜑 → ∀𝑦(𝑦 ∈ 𝐵 → 𝜒))) | 
| 12 | 11 | pm5.74ri 272 | . 2 ⊢ (𝜑 → (∀𝑥(𝑥 ∈ 𝐴 → 𝜓) ↔ ∀𝑦(𝑦 ∈ 𝐵 → 𝜒))) | 
| 13 | df-ral 3061 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝜓 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝜓)) | |
| 14 | df-ral 3061 | . 2 ⊢ (∀𝑦 ∈ 𝐵 𝜒 ↔ ∀𝑦(𝑦 ∈ 𝐵 → 𝜒)) | |
| 15 | 12, 13, 14 | 3bitr4g 314 | 1 ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 𝜓 ↔ ∀𝑦 ∈ 𝐵 𝜒)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∀wal 1537 = wceq 1539 ∈ wcel 2107 ∀wral 3060 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2707 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1779 df-cleq 2728 df-clel 2815 df-ral 3061 | 
| This theorem is referenced by: cbvrexdva2 3348 cbvraldvaOLD 3350 tfrlem3a 8418 mreexexlemd 17688 cbviindavw2 36289 cbvixpdavw2 36296 ismnu 44285 | 
| Copyright terms: Public domain | W3C validator |