Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > df-iin | Structured version Visualization version GIF version |
Description: Define indexed intersection. Definition of [Stoll] p. 45. See the remarks for its sibling operation of indexed union df-iun 4927. An alternate definition tying indexed intersection to ordinary intersection is dfiin2 4965. Theorem intiin 4990 provides a definition of ordinary intersection in terms of indexed intersection. (Contributed by NM, 27-Jun-1998.) |
Ref | Expression |
---|---|
df-iin | ⊢ ∩ 𝑥 ∈ 𝐴 𝐵 = {𝑦 ∣ ∀𝑥 ∈ 𝐴 𝑦 ∈ 𝐵} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vx | . . 3 setvar 𝑥 | |
2 | cA | . . 3 class 𝐴 | |
3 | cB | . . 3 class 𝐵 | |
4 | 1, 2, 3 | ciin 4926 | . 2 class ∩ 𝑥 ∈ 𝐴 𝐵 |
5 | vy | . . . . . 6 setvar 𝑦 | |
6 | 5 | cv 1538 | . . . . 5 class 𝑦 |
7 | 6, 3 | wcel 2107 | . . . 4 wff 𝑦 ∈ 𝐵 |
8 | 7, 1, 2 | wral 3065 | . . 3 wff ∀𝑥 ∈ 𝐴 𝑦 ∈ 𝐵 |
9 | 8, 5 | cab 2716 | . 2 class {𝑦 ∣ ∀𝑥 ∈ 𝐴 𝑦 ∈ 𝐵} |
10 | 4, 9 | wceq 1539 | 1 wff ∩ 𝑥 ∈ 𝐴 𝐵 = {𝑦 ∣ ∀𝑥 ∈ 𝐴 𝑦 ∈ 𝐵} |
Colors of variables: wff setvar class |
This definition is referenced by: eliin 4930 iineq1 4942 iineq2 4945 nfiin 4956 nfiing 4958 nfii1 4960 dfiin2g 4963 cbviin 4968 cbviing 4970 intiin 4990 0iin 4994 viin 4995 iinxsng 5018 iinxprg 5019 iinuni 5028 iinabrex 30917 iineq12f 36331 |
Copyright terms: Public domain | W3C validator |