| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-iin | Structured version Visualization version GIF version | ||
| Description: Define indexed intersection. Definition of [Stoll] p. 45. See the remarks for its sibling operation of indexed union df-iun 4946. An alternate definition tying indexed intersection to ordinary intersection is dfiin2 4986. Theorem intiin 5011 provides a definition of ordinary intersection in terms of indexed intersection. (Contributed by NM, 27-Jun-1998.) |
| Ref | Expression |
|---|---|
| df-iin | ⊢ ∩ 𝑥 ∈ 𝐴 𝐵 = {𝑦 ∣ ∀𝑥 ∈ 𝐴 𝑦 ∈ 𝐵} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vx | . . 3 setvar 𝑥 | |
| 2 | cA | . . 3 class 𝐴 | |
| 3 | cB | . . 3 class 𝐵 | |
| 4 | 1, 2, 3 | ciin 4945 | . 2 class ∩ 𝑥 ∈ 𝐴 𝐵 |
| 5 | vy | . . . . . 6 setvar 𝑦 | |
| 6 | 5 | cv 1539 | . . . . 5 class 𝑦 |
| 7 | 6, 3 | wcel 2109 | . . . 4 wff 𝑦 ∈ 𝐵 |
| 8 | 7, 1, 2 | wral 3044 | . . 3 wff ∀𝑥 ∈ 𝐴 𝑦 ∈ 𝐵 |
| 9 | 8, 5 | cab 2707 | . 2 class {𝑦 ∣ ∀𝑥 ∈ 𝐴 𝑦 ∈ 𝐵} |
| 10 | 4, 9 | wceq 1540 | 1 wff ∩ 𝑥 ∈ 𝐴 𝐵 = {𝑦 ∣ ∀𝑥 ∈ 𝐴 𝑦 ∈ 𝐵} |
| Colors of variables: wff setvar class |
| This definition is referenced by: eliin 4949 iineq1 4962 iineq2 4965 nfiin 4977 nfiing 4979 nfii1 4982 dfiin2g 4984 cbviin 4989 cbviing 4991 cbviinv 4993 intiin 5011 0iin 5016 viin 5017 iinxsng 5040 iinxprg 5041 iinuni 5050 iinabrex 32531 iineq1i 36169 iineq12i 36170 cbviinvw2 36206 cbviindavw 36236 cbviindavw2 36260 iineq12f 38143 iineq12dv 45084 |
| Copyright terms: Public domain | W3C validator |