MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-iin Structured version   Visualization version   GIF version

Definition df-iin 4758
Description: Define indexed intersection. Definition of [Stoll] p. 45. See the remarks for its sibling operation of indexed union df-iun 4757. An alternate definition tying indexed intersection to ordinary intersection is dfiin2 4790. Theorem intiin 4809 provides a definition of ordinary intersection in terms of indexed intersection. (Contributed by NM, 27-Jun-1998.)
Assertion
Ref Expression
df-iin 𝑥𝐴 𝐵 = {𝑦 ∣ ∀𝑥𝐴 𝑦𝐵}
Distinct variable groups:   𝑥,𝑦   𝑦,𝐴   𝑦,𝐵
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)

Detailed syntax breakdown of Definition df-iin
StepHypRef Expression
1 vx . . 3 setvar 𝑥
2 cA . . 3 class 𝐴
3 cB . . 3 class 𝐵
41, 2, 3ciin 4756 . 2 class 𝑥𝐴 𝐵
5 vy . . . . . 6 setvar 𝑦
65cv 1600 . . . . 5 class 𝑦
76, 3wcel 2107 . . . 4 wff 𝑦𝐵
87, 1, 2wral 3090 . . 3 wff 𝑥𝐴 𝑦𝐵
98, 5cab 2763 . 2 class {𝑦 ∣ ∀𝑥𝐴 𝑦𝐵}
104, 9wceq 1601 1 wff 𝑥𝐴 𝐵 = {𝑦 ∣ ∀𝑥𝐴 𝑦𝐵}
Colors of variables: wff setvar class
This definition is referenced by:  eliin  4760  iineq1  4770  iineq2  4773  nfiin  4784  nfii1  4786  dfiin2g  4788  cbviin  4793  intiin  4809  0iin  4813  viin  4814  iinxsng  4835  iinxprg  4836  iinuni  4845  iineq12f  34604
  Copyright terms: Public domain W3C validator