MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-iin Structured version   Visualization version   GIF version

Definition df-iin 5001
Description: Define indexed intersection. Definition of [Stoll] p. 45. See the remarks for its sibling operation of indexed union df-iun 5000. An alternate definition tying indexed intersection to ordinary intersection is dfiin2 5038. Theorem intiin 5063 provides a definition of ordinary intersection in terms of indexed intersection. (Contributed by NM, 27-Jun-1998.)
Assertion
Ref Expression
df-iin 𝑥𝐴 𝐵 = {𝑦 ∣ ∀𝑥𝐴 𝑦𝐵}
Distinct variable groups:   𝑥,𝑦   𝑦,𝐴   𝑦,𝐵
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)

Detailed syntax breakdown of Definition df-iin
StepHypRef Expression
1 vx . . 3 setvar 𝑥
2 cA . . 3 class 𝐴
3 cB . . 3 class 𝐵
41, 2, 3ciin 4999 . 2 class 𝑥𝐴 𝐵
5 vy . . . . . 6 setvar 𝑦
65cv 1541 . . . . 5 class 𝑦
76, 3wcel 2107 . . . 4 wff 𝑦𝐵
87, 1, 2wral 3062 . . 3 wff 𝑥𝐴 𝑦𝐵
98, 5cab 2710 . 2 class {𝑦 ∣ ∀𝑥𝐴 𝑦𝐵}
104, 9wceq 1542 1 wff 𝑥𝐴 𝐵 = {𝑦 ∣ ∀𝑥𝐴 𝑦𝐵}
Colors of variables: wff setvar class
This definition is referenced by:  eliin  5003  iineq1  5015  iineq2  5018  nfiin  5029  nfiing  5031  nfii1  5033  dfiin2g  5036  cbviin  5041  cbviing  5043  intiin  5063  0iin  5068  viin  5069  iinxsng  5092  iinxprg  5093  iinuni  5102  iinabrex  31800  iineq12f  37032
  Copyright terms: Public domain W3C validator