MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-iin Structured version   Visualization version   GIF version

Definition df-iin 4924
Description: Define indexed intersection. Definition of [Stoll] p. 45. See the remarks for its sibling operation of indexed union df-iun 4923. An alternate definition tying indexed intersection to ordinary intersection is dfiin2 4960. Theorem intiin 4985 provides a definition of ordinary intersection in terms of indexed intersection. (Contributed by NM, 27-Jun-1998.)
Assertion
Ref Expression
df-iin 𝑥𝐴 𝐵 = {𝑦 ∣ ∀𝑥𝐴 𝑦𝐵}
Distinct variable groups:   𝑥,𝑦   𝑦,𝐴   𝑦,𝐵
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)

Detailed syntax breakdown of Definition df-iin
StepHypRef Expression
1 vx . . 3 setvar 𝑥
2 cA . . 3 class 𝐴
3 cB . . 3 class 𝐵
41, 2, 3ciin 4922 . 2 class 𝑥𝐴 𝐵
5 vy . . . . . 6 setvar 𝑦
65cv 1538 . . . . 5 class 𝑦
76, 3wcel 2108 . . . 4 wff 𝑦𝐵
87, 1, 2wral 3063 . . 3 wff 𝑥𝐴 𝑦𝐵
98, 5cab 2715 . 2 class {𝑦 ∣ ∀𝑥𝐴 𝑦𝐵}
104, 9wceq 1539 1 wff 𝑥𝐴 𝐵 = {𝑦 ∣ ∀𝑥𝐴 𝑦𝐵}
Colors of variables: wff setvar class
This definition is referenced by:  eliin  4926  iineq1  4938  iineq2  4941  nfiin  4952  nfiing  4954  nfii1  4956  dfiin2g  4958  cbviin  4963  cbviing  4965  intiin  4985  0iin  4989  viin  4990  iinxsng  5013  iinxprg  5014  iinuni  5023  iinabrex  30809  iineq12f  36249
  Copyright terms: Public domain W3C validator