MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-iin Structured version   Visualization version   GIF version

Definition df-iin 4928
Description: Define indexed intersection. Definition of [Stoll] p. 45. See the remarks for its sibling operation of indexed union df-iun 4927. An alternate definition tying indexed intersection to ordinary intersection is dfiin2 4965. Theorem intiin 4990 provides a definition of ordinary intersection in terms of indexed intersection. (Contributed by NM, 27-Jun-1998.)
Assertion
Ref Expression
df-iin 𝑥𝐴 𝐵 = {𝑦 ∣ ∀𝑥𝐴 𝑦𝐵}
Distinct variable groups:   𝑥,𝑦   𝑦,𝐴   𝑦,𝐵
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)

Detailed syntax breakdown of Definition df-iin
StepHypRef Expression
1 vx . . 3 setvar 𝑥
2 cA . . 3 class 𝐴
3 cB . . 3 class 𝐵
41, 2, 3ciin 4926 . 2 class 𝑥𝐴 𝐵
5 vy . . . . . 6 setvar 𝑦
65cv 1538 . . . . 5 class 𝑦
76, 3wcel 2107 . . . 4 wff 𝑦𝐵
87, 1, 2wral 3065 . . 3 wff 𝑥𝐴 𝑦𝐵
98, 5cab 2716 . 2 class {𝑦 ∣ ∀𝑥𝐴 𝑦𝐵}
104, 9wceq 1539 1 wff 𝑥𝐴 𝐵 = {𝑦 ∣ ∀𝑥𝐴 𝑦𝐵}
Colors of variables: wff setvar class
This definition is referenced by:  eliin  4930  iineq1  4942  iineq2  4945  nfiin  4956  nfiing  4958  nfii1  4960  dfiin2g  4963  cbviin  4968  cbviing  4970  intiin  4990  0iin  4994  viin  4995  iinxsng  5018  iinxprg  5019  iinuni  5028  iinabrex  30917  iineq12f  36331
  Copyright terms: Public domain W3C validator