| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-iin | Structured version Visualization version GIF version | ||
| Description: Define indexed intersection. Definition of [Stoll] p. 45. See the remarks for its sibling operation of indexed union df-iun 4943. An alternate definition tying indexed intersection to ordinary intersection is dfiin2 4983. Theorem intiin 5010 provides a definition of ordinary intersection in terms of indexed intersection. (Contributed by NM, 27-Jun-1998.) |
| Ref | Expression |
|---|---|
| df-iin | ⊢ ∩ 𝑥 ∈ 𝐴 𝐵 = {𝑦 ∣ ∀𝑥 ∈ 𝐴 𝑦 ∈ 𝐵} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vx | . . 3 setvar 𝑥 | |
| 2 | cA | . . 3 class 𝐴 | |
| 3 | cB | . . 3 class 𝐵 | |
| 4 | 1, 2, 3 | ciin 4942 | . 2 class ∩ 𝑥 ∈ 𝐴 𝐵 |
| 5 | vy | . . . . . 6 setvar 𝑦 | |
| 6 | 5 | cv 1540 | . . . . 5 class 𝑦 |
| 7 | 6, 3 | wcel 2113 | . . . 4 wff 𝑦 ∈ 𝐵 |
| 8 | 7, 1, 2 | wral 3048 | . . 3 wff ∀𝑥 ∈ 𝐴 𝑦 ∈ 𝐵 |
| 9 | 8, 5 | cab 2711 | . 2 class {𝑦 ∣ ∀𝑥 ∈ 𝐴 𝑦 ∈ 𝐵} |
| 10 | 4, 9 | wceq 1541 | 1 wff ∩ 𝑥 ∈ 𝐴 𝐵 = {𝑦 ∣ ∀𝑥 ∈ 𝐴 𝑦 ∈ 𝐵} |
| Colors of variables: wff setvar class |
| This definition is referenced by: eliin 4946 iineq1 4959 iineq2 4962 nfiin 4974 nfiing 4976 nfii1 4979 dfiin2g 4981 cbviin 4986 cbviing 4988 cbviinv 4990 intiin 5010 0iin 5014 viin 5015 iinxsng 5038 iinxprg 5039 iinuni 5048 iinabrex 32551 iineq1i 36261 iineq12i 36262 cbviinvw2 36298 cbviindavw 36328 cbviindavw2 36352 iineq12f 38224 iineq12dv 45227 |
| Copyright terms: Public domain | W3C validator |