MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-iin Structured version   Visualization version   GIF version

Definition df-iin 4958
Description: Define indexed intersection. Definition of [Stoll] p. 45. See the remarks for its sibling operation of indexed union df-iun 4957. An alternate definition tying indexed intersection to ordinary intersection is dfiin2 4998. Theorem intiin 5023 provides a definition of ordinary intersection in terms of indexed intersection. (Contributed by NM, 27-Jun-1998.)
Assertion
Ref Expression
df-iin 𝑥𝐴 𝐵 = {𝑦 ∣ ∀𝑥𝐴 𝑦𝐵}
Distinct variable groups:   𝑥,𝑦   𝑦,𝐴   𝑦,𝐵
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)

Detailed syntax breakdown of Definition df-iin
StepHypRef Expression
1 vx . . 3 setvar 𝑥
2 cA . . 3 class 𝐴
3 cB . . 3 class 𝐵
41, 2, 3ciin 4956 . 2 class 𝑥𝐴 𝐵
5 vy . . . . . 6 setvar 𝑦
65cv 1539 . . . . 5 class 𝑦
76, 3wcel 2109 . . . 4 wff 𝑦𝐵
87, 1, 2wral 3044 . . 3 wff 𝑥𝐴 𝑦𝐵
98, 5cab 2707 . 2 class {𝑦 ∣ ∀𝑥𝐴 𝑦𝐵}
104, 9wceq 1540 1 wff 𝑥𝐴 𝐵 = {𝑦 ∣ ∀𝑥𝐴 𝑦𝐵}
Colors of variables: wff setvar class
This definition is referenced by:  eliin  4960  iineq1  4973  iineq2  4976  nfiin  4988  nfiing  4990  nfii1  4993  dfiin2g  4996  cbviin  5001  cbviing  5003  cbviinv  5005  intiin  5023  0iin  5028  viin  5029  iinxsng  5052  iinxprg  5053  iinuni  5062  iinabrex  32498  iineq1i  36184  iineq12i  36185  cbviinvw2  36221  cbviindavw  36251  cbviindavw2  36275  iineq12f  38158  iineq12dv  45100
  Copyright terms: Public domain W3C validator