| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-iin | Structured version Visualization version GIF version | ||
| Description: Define indexed intersection. Definition of [Stoll] p. 45. See the remarks for its sibling operation of indexed union df-iun 4943. An alternate definition tying indexed intersection to ordinary intersection is dfiin2 4983. Theorem intiin 5008 provides a definition of ordinary intersection in terms of indexed intersection. (Contributed by NM, 27-Jun-1998.) |
| Ref | Expression |
|---|---|
| df-iin | ⊢ ∩ 𝑥 ∈ 𝐴 𝐵 = {𝑦 ∣ ∀𝑥 ∈ 𝐴 𝑦 ∈ 𝐵} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vx | . . 3 setvar 𝑥 | |
| 2 | cA | . . 3 class 𝐴 | |
| 3 | cB | . . 3 class 𝐵 | |
| 4 | 1, 2, 3 | ciin 4942 | . 2 class ∩ 𝑥 ∈ 𝐴 𝐵 |
| 5 | vy | . . . . . 6 setvar 𝑦 | |
| 6 | 5 | cv 1540 | . . . . 5 class 𝑦 |
| 7 | 6, 3 | wcel 2111 | . . . 4 wff 𝑦 ∈ 𝐵 |
| 8 | 7, 1, 2 | wral 3047 | . . 3 wff ∀𝑥 ∈ 𝐴 𝑦 ∈ 𝐵 |
| 9 | 8, 5 | cab 2709 | . 2 class {𝑦 ∣ ∀𝑥 ∈ 𝐴 𝑦 ∈ 𝐵} |
| 10 | 4, 9 | wceq 1541 | 1 wff ∩ 𝑥 ∈ 𝐴 𝐵 = {𝑦 ∣ ∀𝑥 ∈ 𝐴 𝑦 ∈ 𝐵} |
| Colors of variables: wff setvar class |
| This definition is referenced by: eliin 4946 iineq1 4959 iineq2 4962 nfiin 4974 nfiing 4976 nfii1 4979 dfiin2g 4981 cbviin 4986 cbviing 4988 cbviinv 4990 intiin 5008 0iin 5012 viin 5013 iinxsng 5036 iinxprg 5037 iinuni 5046 iinabrex 32544 iineq1i 36229 iineq12i 36230 cbviinvw2 36266 cbviindavw 36296 cbviindavw2 36320 iineq12f 38203 iineq12dv 45142 |
| Copyright terms: Public domain | W3C validator |