MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-iin Structured version   Visualization version   GIF version

Definition df-iin 4947
Description: Define indexed intersection. Definition of [Stoll] p. 45. See the remarks for its sibling operation of indexed union df-iun 4946. An alternate definition tying indexed intersection to ordinary intersection is dfiin2 4986. Theorem intiin 5011 provides a definition of ordinary intersection in terms of indexed intersection. (Contributed by NM, 27-Jun-1998.)
Assertion
Ref Expression
df-iin 𝑥𝐴 𝐵 = {𝑦 ∣ ∀𝑥𝐴 𝑦𝐵}
Distinct variable groups:   𝑥,𝑦   𝑦,𝐴   𝑦,𝐵
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)

Detailed syntax breakdown of Definition df-iin
StepHypRef Expression
1 vx . . 3 setvar 𝑥
2 cA . . 3 class 𝐴
3 cB . . 3 class 𝐵
41, 2, 3ciin 4945 . 2 class 𝑥𝐴 𝐵
5 vy . . . . . 6 setvar 𝑦
65cv 1539 . . . . 5 class 𝑦
76, 3wcel 2109 . . . 4 wff 𝑦𝐵
87, 1, 2wral 3044 . . 3 wff 𝑥𝐴 𝑦𝐵
98, 5cab 2707 . 2 class {𝑦 ∣ ∀𝑥𝐴 𝑦𝐵}
104, 9wceq 1540 1 wff 𝑥𝐴 𝐵 = {𝑦 ∣ ∀𝑥𝐴 𝑦𝐵}
Colors of variables: wff setvar class
This definition is referenced by:  eliin  4949  iineq1  4962  iineq2  4965  nfiin  4977  nfiing  4979  nfii1  4982  dfiin2g  4984  cbviin  4989  cbviing  4991  cbviinv  4993  intiin  5011  0iin  5016  viin  5017  iinxsng  5040  iinxprg  5041  iinuni  5050  iinabrex  32531  iineq1i  36169  iineq12i  36170  cbviinvw2  36206  cbviindavw  36236  cbviindavw2  36260  iineq12f  38143  iineq12dv  45084
  Copyright terms: Public domain W3C validator