| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-iin | Structured version Visualization version GIF version | ||
| Description: Define indexed intersection. Definition of [Stoll] p. 45. See the remarks for its sibling operation of indexed union df-iun 4957. An alternate definition tying indexed intersection to ordinary intersection is dfiin2 4998. Theorem intiin 5023 provides a definition of ordinary intersection in terms of indexed intersection. (Contributed by NM, 27-Jun-1998.) |
| Ref | Expression |
|---|---|
| df-iin | ⊢ ∩ 𝑥 ∈ 𝐴 𝐵 = {𝑦 ∣ ∀𝑥 ∈ 𝐴 𝑦 ∈ 𝐵} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vx | . . 3 setvar 𝑥 | |
| 2 | cA | . . 3 class 𝐴 | |
| 3 | cB | . . 3 class 𝐵 | |
| 4 | 1, 2, 3 | ciin 4956 | . 2 class ∩ 𝑥 ∈ 𝐴 𝐵 |
| 5 | vy | . . . . . 6 setvar 𝑦 | |
| 6 | 5 | cv 1539 | . . . . 5 class 𝑦 |
| 7 | 6, 3 | wcel 2109 | . . . 4 wff 𝑦 ∈ 𝐵 |
| 8 | 7, 1, 2 | wral 3044 | . . 3 wff ∀𝑥 ∈ 𝐴 𝑦 ∈ 𝐵 |
| 9 | 8, 5 | cab 2707 | . 2 class {𝑦 ∣ ∀𝑥 ∈ 𝐴 𝑦 ∈ 𝐵} |
| 10 | 4, 9 | wceq 1540 | 1 wff ∩ 𝑥 ∈ 𝐴 𝐵 = {𝑦 ∣ ∀𝑥 ∈ 𝐴 𝑦 ∈ 𝐵} |
| Colors of variables: wff setvar class |
| This definition is referenced by: eliin 4960 iineq1 4973 iineq2 4976 nfiin 4988 nfiing 4990 nfii1 4993 dfiin2g 4996 cbviin 5001 cbviing 5003 cbviinv 5005 intiin 5023 0iin 5028 viin 5029 iinxsng 5052 iinxprg 5053 iinuni 5062 iinabrex 32498 iineq1i 36184 iineq12i 36185 cbviinvw2 36221 cbviindavw 36251 cbviindavw2 36275 iineq12f 38158 iineq12dv 45100 |
| Copyright terms: Public domain | W3C validator |