![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > df-iin | Structured version Visualization version GIF version |
Description: Define indexed intersection. Definition of [Stoll] p. 45. See the remarks for its sibling operation of indexed union df-iun 5017. An alternate definition tying indexed intersection to ordinary intersection is dfiin2 5057. Theorem intiin 5082 provides a definition of ordinary intersection in terms of indexed intersection. (Contributed by NM, 27-Jun-1998.) |
Ref | Expression |
---|---|
df-iin | ⊢ ∩ 𝑥 ∈ 𝐴 𝐵 = {𝑦 ∣ ∀𝑥 ∈ 𝐴 𝑦 ∈ 𝐵} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vx | . . 3 setvar 𝑥 | |
2 | cA | . . 3 class 𝐴 | |
3 | cB | . . 3 class 𝐵 | |
4 | 1, 2, 3 | ciin 5016 | . 2 class ∩ 𝑥 ∈ 𝐴 𝐵 |
5 | vy | . . . . . 6 setvar 𝑦 | |
6 | 5 | cv 1536 | . . . . 5 class 𝑦 |
7 | 6, 3 | wcel 2108 | . . . 4 wff 𝑦 ∈ 𝐵 |
8 | 7, 1, 2 | wral 3067 | . . 3 wff ∀𝑥 ∈ 𝐴 𝑦 ∈ 𝐵 |
9 | 8, 5 | cab 2717 | . 2 class {𝑦 ∣ ∀𝑥 ∈ 𝐴 𝑦 ∈ 𝐵} |
10 | 4, 9 | wceq 1537 | 1 wff ∩ 𝑥 ∈ 𝐴 𝐵 = {𝑦 ∣ ∀𝑥 ∈ 𝐴 𝑦 ∈ 𝐵} |
Colors of variables: wff setvar class |
This definition is referenced by: eliin 5020 iineq1 5032 iineq2 5035 nfiin 5047 nfiing 5049 nfii1 5052 dfiin2g 5055 cbviin 5060 cbviing 5062 cbviinv 5064 intiin 5082 0iin 5087 viin 5088 iinxsng 5111 iinxprg 5112 iinuni 5121 iinabrex 32591 iineq1i 36160 iineq12i 36161 cbviinvw2 36199 cbviindavw 36229 cbviindavw2 36253 iineq12f 38124 iineq12dv 45008 |
Copyright terms: Public domain | W3C validator |