MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-iin Structured version   Visualization version   GIF version

Definition df-iin 5018
Description: Define indexed intersection. Definition of [Stoll] p. 45. See the remarks for its sibling operation of indexed union df-iun 5017. An alternate definition tying indexed intersection to ordinary intersection is dfiin2 5057. Theorem intiin 5082 provides a definition of ordinary intersection in terms of indexed intersection. (Contributed by NM, 27-Jun-1998.)
Assertion
Ref Expression
df-iin 𝑥𝐴 𝐵 = {𝑦 ∣ ∀𝑥𝐴 𝑦𝐵}
Distinct variable groups:   𝑥,𝑦   𝑦,𝐴   𝑦,𝐵
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)

Detailed syntax breakdown of Definition df-iin
StepHypRef Expression
1 vx . . 3 setvar 𝑥
2 cA . . 3 class 𝐴
3 cB . . 3 class 𝐵
41, 2, 3ciin 5016 . 2 class 𝑥𝐴 𝐵
5 vy . . . . . 6 setvar 𝑦
65cv 1536 . . . . 5 class 𝑦
76, 3wcel 2108 . . . 4 wff 𝑦𝐵
87, 1, 2wral 3067 . . 3 wff 𝑥𝐴 𝑦𝐵
98, 5cab 2717 . 2 class {𝑦 ∣ ∀𝑥𝐴 𝑦𝐵}
104, 9wceq 1537 1 wff 𝑥𝐴 𝐵 = {𝑦 ∣ ∀𝑥𝐴 𝑦𝐵}
Colors of variables: wff setvar class
This definition is referenced by:  eliin  5020  iineq1  5032  iineq2  5035  nfiin  5047  nfiing  5049  nfii1  5052  dfiin2g  5055  cbviin  5060  cbviing  5062  cbviinv  5064  intiin  5082  0iin  5087  viin  5088  iinxsng  5111  iinxprg  5112  iinuni  5121  iinabrex  32591  iineq1i  36160  iineq12i  36161  cbviinvw2  36199  cbviindavw  36229  cbviindavw2  36253  iineq12f  38124  iineq12dv  45008
  Copyright terms: Public domain W3C validator