![]() |
Mathbox for Gino Giotto |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > cbvralvw2 | Structured version Visualization version GIF version |
Description: Change bound variable and domain in the restricted universal quantifier, using implicit substitution. (Contributed by GG, 14-Aug-2025.) |
Ref | Expression |
---|---|
cbvralvw2.1 | ⊢ (𝑥 = 𝑦 → 𝐴 = 𝐵) |
cbvralvw2.2 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
cbvralvw2 | ⊢ (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑦 ∈ 𝐵 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq1w 2827 | . . . . 5 ⊢ (𝑥 = 𝑦 → (𝑥 ∈ 𝐴 ↔ 𝑦 ∈ 𝐴)) | |
2 | cbvralvw2.1 | . . . . . 6 ⊢ (𝑥 = 𝑦 → 𝐴 = 𝐵) | |
3 | 2 | eleq2d 2830 | . . . . 5 ⊢ (𝑥 = 𝑦 → (𝑦 ∈ 𝐴 ↔ 𝑦 ∈ 𝐵)) |
4 | 1, 3 | bitrd 279 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝑥 ∈ 𝐴 ↔ 𝑦 ∈ 𝐵)) |
5 | cbvralvw2.2 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
6 | 4, 5 | imbi12d 344 | . . 3 ⊢ (𝑥 = 𝑦 → ((𝑥 ∈ 𝐴 → 𝜑) ↔ (𝑦 ∈ 𝐵 → 𝜓))) |
7 | 6 | cbvalvw 2035 | . 2 ⊢ (∀𝑥(𝑥 ∈ 𝐴 → 𝜑) ↔ ∀𝑦(𝑦 ∈ 𝐵 → 𝜓)) |
8 | df-ral 3068 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝜑)) | |
9 | df-ral 3068 | . 2 ⊢ (∀𝑦 ∈ 𝐵 𝜓 ↔ ∀𝑦(𝑦 ∈ 𝐵 → 𝜓)) | |
10 | 7, 8, 9 | 3bitr4i 303 | 1 ⊢ (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑦 ∈ 𝐵 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∀wal 1535 = wceq 1537 ∈ wcel 2108 ∀wral 3067 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1778 df-cleq 2732 df-clel 2819 df-ral 3068 |
This theorem is referenced by: cbviinvw2 36191 cbvixpvw2 36203 |
Copyright terms: Public domain | W3C validator |