Users' Mathboxes Mathbox for Gino Giotto < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cbvralvw2 Structured version   Visualization version   GIF version

Theorem cbvralvw2 36209
Description: Change bound variable and domain in the restricted universal quantifier, using implicit substitution. (Contributed by GG, 14-Aug-2025.)
Hypotheses
Ref Expression
cbvralvw2.1 (𝑥 = 𝑦𝐴 = 𝐵)
cbvralvw2.2 (𝑥 = 𝑦 → (𝜑𝜓))
Assertion
Ref Expression
cbvralvw2 (∀𝑥𝐴 𝜑 ↔ ∀𝑦𝐵 𝜓)
Distinct variable groups:   𝑥,𝑦   𝜑,𝑦   𝜓,𝑥   𝑦,𝐴   𝑥,𝐵
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑦)   𝐴(𝑥)   𝐵(𝑦)

Proof of Theorem cbvralvw2
StepHypRef Expression
1 eleq1w 2812 . . . . 5 (𝑥 = 𝑦 → (𝑥𝐴𝑦𝐴))
2 cbvralvw2.1 . . . . . 6 (𝑥 = 𝑦𝐴 = 𝐵)
32eleq2d 2815 . . . . 5 (𝑥 = 𝑦 → (𝑦𝐴𝑦𝐵))
41, 3bitrd 279 . . . 4 (𝑥 = 𝑦 → (𝑥𝐴𝑦𝐵))
5 cbvralvw2.2 . . . 4 (𝑥 = 𝑦 → (𝜑𝜓))
64, 5imbi12d 344 . . 3 (𝑥 = 𝑦 → ((𝑥𝐴𝜑) ↔ (𝑦𝐵𝜓)))
76cbvalvw 2036 . 2 (∀𝑥(𝑥𝐴𝜑) ↔ ∀𝑦(𝑦𝐵𝜓))
8 df-ral 3046 . 2 (∀𝑥𝐴 𝜑 ↔ ∀𝑥(𝑥𝐴𝜑))
9 df-ral 3046 . 2 (∀𝑦𝐵 𝜓 ↔ ∀𝑦(𝑦𝐵𝜓))
107, 8, 93bitr4i 303 1 (∀𝑥𝐴 𝜑 ↔ ∀𝑦𝐵 𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wal 1538   = wceq 1540  wcel 2109  wral 3045
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1780  df-cleq 2722  df-clel 2804  df-ral 3046
This theorem is referenced by:  cbviinvw2  36216  cbvixpvw2  36228
  Copyright terms: Public domain W3C validator