| Mathbox for Gino Giotto |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > cbvixpvw2 | Structured version Visualization version GIF version | ||
| Description: Change bound variable and domain in an indexed Cartesian product, using implicit substitution. (Contributed by GG, 14-Aug-2025.) |
| Ref | Expression |
|---|---|
| cbvixpvw2.1 | ⊢ (𝑥 = 𝑦 → 𝐶 = 𝐷) |
| cbvixpvw2.2 | ⊢ (𝑥 = 𝑦 → 𝐴 = 𝐵) |
| Ref | Expression |
|---|---|
| cbvixpvw2 | ⊢ X𝑥 ∈ 𝐴 𝐶 = X𝑦 ∈ 𝐵 𝐷 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 22 | . . . . . . 7 ⊢ (𝑥 = 𝑦 → 𝑥 = 𝑦) | |
| 2 | cbvixpvw2.2 | . . . . . . 7 ⊢ (𝑥 = 𝑦 → 𝐴 = 𝐵) | |
| 3 | 1, 2 | eleq12d 2827 | . . . . . 6 ⊢ (𝑥 = 𝑦 → (𝑥 ∈ 𝐴 ↔ 𝑦 ∈ 𝐵)) |
| 4 | 3 | cbvabv 2804 | . . . . 5 ⊢ {𝑥 ∣ 𝑥 ∈ 𝐴} = {𝑦 ∣ 𝑦 ∈ 𝐵} |
| 5 | 4 | fneq2i 6646 | . . . 4 ⊢ (𝑡 Fn {𝑥 ∣ 𝑥 ∈ 𝐴} ↔ 𝑡 Fn {𝑦 ∣ 𝑦 ∈ 𝐵}) |
| 6 | fveq2 6886 | . . . . . 6 ⊢ (𝑥 = 𝑦 → (𝑡‘𝑥) = (𝑡‘𝑦)) | |
| 7 | cbvixpvw2.1 | . . . . . 6 ⊢ (𝑥 = 𝑦 → 𝐶 = 𝐷) | |
| 8 | 6, 7 | eleq12d 2827 | . . . . 5 ⊢ (𝑥 = 𝑦 → ((𝑡‘𝑥) ∈ 𝐶 ↔ (𝑡‘𝑦) ∈ 𝐷)) |
| 9 | 2, 8 | cbvralvw2 36202 | . . . 4 ⊢ (∀𝑥 ∈ 𝐴 (𝑡‘𝑥) ∈ 𝐶 ↔ ∀𝑦 ∈ 𝐵 (𝑡‘𝑦) ∈ 𝐷) |
| 10 | 5, 9 | anbi12i 628 | . . 3 ⊢ ((𝑡 Fn {𝑥 ∣ 𝑥 ∈ 𝐴} ∧ ∀𝑥 ∈ 𝐴 (𝑡‘𝑥) ∈ 𝐶) ↔ (𝑡 Fn {𝑦 ∣ 𝑦 ∈ 𝐵} ∧ ∀𝑦 ∈ 𝐵 (𝑡‘𝑦) ∈ 𝐷)) |
| 11 | 10 | abbii 2801 | . 2 ⊢ {𝑡 ∣ (𝑡 Fn {𝑥 ∣ 𝑥 ∈ 𝐴} ∧ ∀𝑥 ∈ 𝐴 (𝑡‘𝑥) ∈ 𝐶)} = {𝑡 ∣ (𝑡 Fn {𝑦 ∣ 𝑦 ∈ 𝐵} ∧ ∀𝑦 ∈ 𝐵 (𝑡‘𝑦) ∈ 𝐷)} |
| 12 | df-ixp 8920 | . 2 ⊢ X𝑥 ∈ 𝐴 𝐶 = {𝑡 ∣ (𝑡 Fn {𝑥 ∣ 𝑥 ∈ 𝐴} ∧ ∀𝑥 ∈ 𝐴 (𝑡‘𝑥) ∈ 𝐶)} | |
| 13 | df-ixp 8920 | . 2 ⊢ X𝑦 ∈ 𝐵 𝐷 = {𝑡 ∣ (𝑡 Fn {𝑦 ∣ 𝑦 ∈ 𝐵} ∧ ∀𝑦 ∈ 𝐵 (𝑡‘𝑦) ∈ 𝐷)} | |
| 14 | 11, 12, 13 | 3eqtr4i 2767 | 1 ⊢ X𝑥 ∈ 𝐴 𝐶 = X𝑦 ∈ 𝐵 𝐷 |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2107 {cab 2712 ∀wral 3050 Fn wfn 6536 ‘cfv 6541 Xcixp 8919 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2706 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-ral 3051 df-rab 3420 df-v 3465 df-dif 3934 df-un 3936 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-br 5124 df-iota 6494 df-fn 6544 df-fv 6549 df-ixp 8920 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |