Users' Mathboxes Mathbox for Gino Giotto < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cbvixpvw2 Structured version   Visualization version   GIF version

Theorem cbvixpvw2 36203
Description: Change bound variable and domain in an indexed Cartesian product, using implicit substitution. (Contributed by GG, 14-Aug-2025.)
Hypotheses
Ref Expression
cbvixpvw2.1 (𝑥 = 𝑦𝐶 = 𝐷)
cbvixpvw2.2 (𝑥 = 𝑦𝐴 = 𝐵)
Assertion
Ref Expression
cbvixpvw2 X𝑥𝐴 𝐶 = X𝑦𝐵 𝐷
Distinct variable groups:   𝑥,𝑦   𝑦,𝐴   𝑥,𝐵   𝑦,𝐶   𝑥,𝐷
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑦)   𝐶(𝑥)   𝐷(𝑦)

Proof of Theorem cbvixpvw2
Dummy variable 𝑡 is distinct from all other variables.
StepHypRef Expression
1 id 22 . . . . . . 7 (𝑥 = 𝑦𝑥 = 𝑦)
2 cbvixpvw2.2 . . . . . . 7 (𝑥 = 𝑦𝐴 = 𝐵)
31, 2eleq12d 2838 . . . . . 6 (𝑥 = 𝑦 → (𝑥𝐴𝑦𝐵))
43cbvabv 2815 . . . . 5 {𝑥𝑥𝐴} = {𝑦𝑦𝐵}
54fneq2i 6672 . . . 4 (𝑡 Fn {𝑥𝑥𝐴} ↔ 𝑡 Fn {𝑦𝑦𝐵})
6 fveq2 6915 . . . . . 6 (𝑥 = 𝑦 → (𝑡𝑥) = (𝑡𝑦))
7 cbvixpvw2.1 . . . . . 6 (𝑥 = 𝑦𝐶 = 𝐷)
86, 7eleq12d 2838 . . . . 5 (𝑥 = 𝑦 → ((𝑡𝑥) ∈ 𝐶 ↔ (𝑡𝑦) ∈ 𝐷))
92, 8cbvralvw2 36184 . . . 4 (∀𝑥𝐴 (𝑡𝑥) ∈ 𝐶 ↔ ∀𝑦𝐵 (𝑡𝑦) ∈ 𝐷)
105, 9anbi12i 627 . . 3 ((𝑡 Fn {𝑥𝑥𝐴} ∧ ∀𝑥𝐴 (𝑡𝑥) ∈ 𝐶) ↔ (𝑡 Fn {𝑦𝑦𝐵} ∧ ∀𝑦𝐵 (𝑡𝑦) ∈ 𝐷))
1110abbii 2812 . 2 {𝑡 ∣ (𝑡 Fn {𝑥𝑥𝐴} ∧ ∀𝑥𝐴 (𝑡𝑥) ∈ 𝐶)} = {𝑡 ∣ (𝑡 Fn {𝑦𝑦𝐵} ∧ ∀𝑦𝐵 (𝑡𝑦) ∈ 𝐷)}
12 df-ixp 8950 . 2 X𝑥𝐴 𝐶 = {𝑡 ∣ (𝑡 Fn {𝑥𝑥𝐴} ∧ ∀𝑥𝐴 (𝑡𝑥) ∈ 𝐶)}
13 df-ixp 8950 . 2 X𝑦𝐵 𝐷 = {𝑡 ∣ (𝑡 Fn {𝑦𝑦𝐵} ∧ ∀𝑦𝐵 (𝑡𝑦) ∈ 𝐷)}
1411, 12, 133eqtr4i 2778 1 X𝑥𝐴 𝐶 = X𝑦𝐵 𝐷
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2108  {cab 2717  wral 3067   Fn wfn 6563  cfv 6568  Xcixp 8949
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ral 3068  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-iota 6520  df-fn 6571  df-fv 6576  df-ixp 8950
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator