| Step | Hyp | Ref
| Expression |
| 1 | | ax7 2015 |
. . . . . . 7
⊢ (𝑥 = 𝑦 → (𝑥 = 𝑤 → 𝑦 = 𝑤)) |
| 2 | | ax12v2 2179 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝑤 → (𝑥 ∈ 𝑡 → ∀𝑥(𝑥 = 𝑤 → 𝑥 ∈ 𝑡))) |
| 3 | 2 | imp 406 |
. . . . . . . . . 10
⊢ ((𝑥 = 𝑤 ∧ 𝑥 ∈ 𝑡) → ∀𝑥(𝑥 = 𝑤 → 𝑥 ∈ 𝑡)) |
| 4 | | equsb3 2103 |
. . . . . . . . . . . . . . 15
⊢ ([𝑥 / 𝑣]𝑣 = 𝑤 ↔ 𝑥 = 𝑤) |
| 5 | 4 | bicomi 224 |
. . . . . . . . . . . . . 14
⊢ (𝑥 = 𝑤 ↔ [𝑥 / 𝑣]𝑣 = 𝑤) |
| 6 | 5 | imbi1i 349 |
. . . . . . . . . . . . 13
⊢ ((𝑥 = 𝑤 → 𝑥 ∈ 𝑡) ↔ ([𝑥 / 𝑣]𝑣 = 𝑤 → 𝑥 ∈ 𝑡)) |
| 7 | 6 | albii 1819 |
. . . . . . . . . . . 12
⊢
(∀𝑥(𝑥 = 𝑤 → 𝑥 ∈ 𝑡) ↔ ∀𝑥([𝑥 / 𝑣]𝑣 = 𝑤 → 𝑥 ∈ 𝑡)) |
| 8 | | df-clab 2714 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 ∈ {𝑣 ∣ 𝑣 = 𝑤} ↔ [𝑥 / 𝑣]𝑣 = 𝑤) |
| 9 | 8 | bicomi 224 |
. . . . . . . . . . . . . . 15
⊢ ([𝑥 / 𝑣]𝑣 = 𝑤 ↔ 𝑥 ∈ {𝑣 ∣ 𝑣 = 𝑤}) |
| 10 | 9 | imbi1i 349 |
. . . . . . . . . . . . . 14
⊢ (([𝑥 / 𝑣]𝑣 = 𝑤 → 𝑥 ∈ 𝑡) ↔ (𝑥 ∈ {𝑣 ∣ 𝑣 = 𝑤} → 𝑥 ∈ 𝑡)) |
| 11 | 10 | albii 1819 |
. . . . . . . . . . . . 13
⊢
(∀𝑥([𝑥 / 𝑣]𝑣 = 𝑤 → 𝑥 ∈ 𝑡) ↔ ∀𝑥(𝑥 ∈ {𝑣 ∣ 𝑣 = 𝑤} → 𝑥 ∈ 𝑡)) |
| 12 | | df-ss 3967 |
. . . . . . . . . . . . . 14
⊢ ({𝑣 ∣ 𝑣 = 𝑤} ⊆ 𝑡 ↔ ∀𝑥(𝑥 ∈ {𝑣 ∣ 𝑣 = 𝑤} → 𝑥 ∈ 𝑡)) |
| 13 | | df-ss 3967 |
. . . . . . . . . . . . . 14
⊢ ({𝑣 ∣ 𝑣 = 𝑤} ⊆ 𝑡 ↔ ∀𝑦(𝑦 ∈ {𝑣 ∣ 𝑣 = 𝑤} → 𝑦 ∈ 𝑡)) |
| 14 | 12, 13 | bitr3i 277 |
. . . . . . . . . . . . 13
⊢
(∀𝑥(𝑥 ∈ {𝑣 ∣ 𝑣 = 𝑤} → 𝑥 ∈ 𝑡) ↔ ∀𝑦(𝑦 ∈ {𝑣 ∣ 𝑣 = 𝑤} → 𝑦 ∈ 𝑡)) |
| 15 | | df-clab 2714 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 ∈ {𝑣 ∣ 𝑣 = 𝑤} ↔ [𝑦 / 𝑣]𝑣 = 𝑤) |
| 16 | 15 | imbi1i 349 |
. . . . . . . . . . . . . 14
⊢ ((𝑦 ∈ {𝑣 ∣ 𝑣 = 𝑤} → 𝑦 ∈ 𝑡) ↔ ([𝑦 / 𝑣]𝑣 = 𝑤 → 𝑦 ∈ 𝑡)) |
| 17 | 16 | albii 1819 |
. . . . . . . . . . . . 13
⊢
(∀𝑦(𝑦 ∈ {𝑣 ∣ 𝑣 = 𝑤} → 𝑦 ∈ 𝑡) ↔ ∀𝑦([𝑦 / 𝑣]𝑣 = 𝑤 → 𝑦 ∈ 𝑡)) |
| 18 | 11, 14, 17 | 3bitri 297 |
. . . . . . . . . . . 12
⊢
(∀𝑥([𝑥 / 𝑣]𝑣 = 𝑤 → 𝑥 ∈ 𝑡) ↔ ∀𝑦([𝑦 / 𝑣]𝑣 = 𝑤 → 𝑦 ∈ 𝑡)) |
| 19 | | equsb3 2103 |
. . . . . . . . . . . . . 14
⊢ ([𝑦 / 𝑣]𝑣 = 𝑤 ↔ 𝑦 = 𝑤) |
| 20 | 19 | imbi1i 349 |
. . . . . . . . . . . . 13
⊢ (([𝑦 / 𝑣]𝑣 = 𝑤 → 𝑦 ∈ 𝑡) ↔ (𝑦 = 𝑤 → 𝑦 ∈ 𝑡)) |
| 21 | 20 | albii 1819 |
. . . . . . . . . . . 12
⊢
(∀𝑦([𝑦 / 𝑣]𝑣 = 𝑤 → 𝑦 ∈ 𝑡) ↔ ∀𝑦(𝑦 = 𝑤 → 𝑦 ∈ 𝑡)) |
| 22 | 7, 18, 21 | 3bitri 297 |
. . . . . . . . . . 11
⊢
(∀𝑥(𝑥 = 𝑤 → 𝑥 ∈ 𝑡) ↔ ∀𝑦(𝑦 = 𝑤 → 𝑦 ∈ 𝑡)) |
| 23 | 22 | biimpi 216 |
. . . . . . . . . 10
⊢
(∀𝑥(𝑥 = 𝑤 → 𝑥 ∈ 𝑡) → ∀𝑦(𝑦 = 𝑤 → 𝑦 ∈ 𝑡)) |
| 24 | | sp 2183 |
. . . . . . . . . 10
⊢
(∀𝑦(𝑦 = 𝑤 → 𝑦 ∈ 𝑡) → (𝑦 = 𝑤 → 𝑦 ∈ 𝑡)) |
| 25 | 3, 23, 24 | 3syl 18 |
. . . . . . . . 9
⊢ ((𝑥 = 𝑤 ∧ 𝑥 ∈ 𝑡) → (𝑦 = 𝑤 → 𝑦 ∈ 𝑡)) |
| 26 | 25 | ex 412 |
. . . . . . . 8
⊢ (𝑥 = 𝑤 → (𝑥 ∈ 𝑡 → (𝑦 = 𝑤 → 𝑦 ∈ 𝑡))) |
| 27 | 26 | com23 86 |
. . . . . . 7
⊢ (𝑥 = 𝑤 → (𝑦 = 𝑤 → (𝑥 ∈ 𝑡 → 𝑦 ∈ 𝑡))) |
| 28 | 1, 27 | sylcom 30 |
. . . . . 6
⊢ (𝑥 = 𝑦 → (𝑥 = 𝑤 → (𝑥 ∈ 𝑡 → 𝑦 ∈ 𝑡))) |
| 29 | 28 | com12 32 |
. . . . 5
⊢ (𝑥 = 𝑤 → (𝑥 = 𝑦 → (𝑥 ∈ 𝑡 → 𝑦 ∈ 𝑡))) |
| 30 | 29 | equcoms 2019 |
. . . 4
⊢ (𝑤 = 𝑥 → (𝑥 = 𝑦 → (𝑥 ∈ 𝑡 → 𝑦 ∈ 𝑡))) |
| 31 | | ax6ev 1969 |
. . . 4
⊢
∃𝑤 𝑤 = 𝑥 |
| 32 | 30, 31 | exlimiiv 1931 |
. . 3
⊢ (𝑥 = 𝑦 → (𝑥 ∈ 𝑡 → 𝑦 ∈ 𝑡)) |
| 33 | | ax9 2122 |
. . . . 5
⊢ (𝑧 = 𝑡 → (𝑥 ∈ 𝑧 → 𝑥 ∈ 𝑡)) |
| 34 | 33 | equcoms 2019 |
. . . 4
⊢ (𝑡 = 𝑧 → (𝑥 ∈ 𝑧 → 𝑥 ∈ 𝑡)) |
| 35 | | ax9 2122 |
. . . 4
⊢ (𝑡 = 𝑧 → (𝑦 ∈ 𝑡 → 𝑦 ∈ 𝑧)) |
| 36 | 34, 35 | imim12d 81 |
. . 3
⊢ (𝑡 = 𝑧 → ((𝑥 ∈ 𝑡 → 𝑦 ∈ 𝑡) → (𝑥 ∈ 𝑧 → 𝑦 ∈ 𝑧))) |
| 37 | 32, 36 | syl5 34 |
. 2
⊢ (𝑡 = 𝑧 → (𝑥 = 𝑦 → (𝑥 ∈ 𝑧 → 𝑦 ∈ 𝑧))) |
| 38 | | ax6ev 1969 |
. 2
⊢
∃𝑡 𝑡 = 𝑧 |
| 39 | 37, 38 | exlimiiv 1931 |
1
⊢ (𝑥 = 𝑦 → (𝑥 ∈ 𝑧 → 𝑦 ∈ 𝑧)) |