Step | Hyp | Ref
| Expression |
1 | | ax7 2015 |
. . . . . . 7
⊢ (𝑥 = 𝑦 → (𝑥 = 𝑤 → 𝑦 = 𝑤)) |
2 | | ax12v2 2180 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝑤 → (𝑥 ∈ 𝑡 → ∀𝑥(𝑥 = 𝑤 → 𝑥 ∈ 𝑡))) |
3 | 2 | imp 406 |
. . . . . . . . . 10
⊢ ((𝑥 = 𝑤 ∧ 𝑥 ∈ 𝑡) → ∀𝑥(𝑥 = 𝑤 → 𝑥 ∈ 𝑡)) |
4 | | equsb3 2103 |
. . . . . . . . . . . . . . 15
⊢ ([𝑥 / 𝑣]𝑣 = 𝑤 ↔ 𝑥 = 𝑤) |
5 | 4 | bicomi 224 |
. . . . . . . . . . . . . 14
⊢ (𝑥 = 𝑤 ↔ [𝑥 / 𝑣]𝑣 = 𝑤) |
6 | 5 | imbi1i 349 |
. . . . . . . . . . . . 13
⊢ ((𝑥 = 𝑤 → 𝑥 ∈ 𝑡) ↔ ([𝑥 / 𝑣]𝑣 = 𝑤 → 𝑥 ∈ 𝑡)) |
7 | 6 | albii 1817 |
. . . . . . . . . . . 12
⊢
(∀𝑥(𝑥 = 𝑤 → 𝑥 ∈ 𝑡) ↔ ∀𝑥([𝑥 / 𝑣]𝑣 = 𝑤 → 𝑥 ∈ 𝑡)) |
8 | | df-clab 2718 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 ∈ {𝑣 ∣ 𝑣 = 𝑤} ↔ [𝑥 / 𝑣]𝑣 = 𝑤) |
9 | 8 | bicomi 224 |
. . . . . . . . . . . . . . 15
⊢ ([𝑥 / 𝑣]𝑣 = 𝑤 ↔ 𝑥 ∈ {𝑣 ∣ 𝑣 = 𝑤}) |
10 | 9 | imbi1i 349 |
. . . . . . . . . . . . . 14
⊢ (([𝑥 / 𝑣]𝑣 = 𝑤 → 𝑥 ∈ 𝑡) ↔ (𝑥 ∈ {𝑣 ∣ 𝑣 = 𝑤} → 𝑥 ∈ 𝑡)) |
11 | 10 | albii 1817 |
. . . . . . . . . . . . 13
⊢
(∀𝑥([𝑥 / 𝑣]𝑣 = 𝑤 → 𝑥 ∈ 𝑡) ↔ ∀𝑥(𝑥 ∈ {𝑣 ∣ 𝑣 = 𝑤} → 𝑥 ∈ 𝑡)) |
12 | | df-ss 3993 |
. . . . . . . . . . . . . 14
⊢ ({𝑣 ∣ 𝑣 = 𝑤} ⊆ 𝑡 ↔ ∀𝑥(𝑥 ∈ {𝑣 ∣ 𝑣 = 𝑤} → 𝑥 ∈ 𝑡)) |
13 | | df-ss 3993 |
. . . . . . . . . . . . . 14
⊢ ({𝑣 ∣ 𝑣 = 𝑤} ⊆ 𝑡 ↔ ∀𝑦(𝑦 ∈ {𝑣 ∣ 𝑣 = 𝑤} → 𝑦 ∈ 𝑡)) |
14 | 12, 13 | bitr3i 277 |
. . . . . . . . . . . . 13
⊢
(∀𝑥(𝑥 ∈ {𝑣 ∣ 𝑣 = 𝑤} → 𝑥 ∈ 𝑡) ↔ ∀𝑦(𝑦 ∈ {𝑣 ∣ 𝑣 = 𝑤} → 𝑦 ∈ 𝑡)) |
15 | | df-clab 2718 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 ∈ {𝑣 ∣ 𝑣 = 𝑤} ↔ [𝑦 / 𝑣]𝑣 = 𝑤) |
16 | 15 | imbi1i 349 |
. . . . . . . . . . . . . 14
⊢ ((𝑦 ∈ {𝑣 ∣ 𝑣 = 𝑤} → 𝑦 ∈ 𝑡) ↔ ([𝑦 / 𝑣]𝑣 = 𝑤 → 𝑦 ∈ 𝑡)) |
17 | 16 | albii 1817 |
. . . . . . . . . . . . 13
⊢
(∀𝑦(𝑦 ∈ {𝑣 ∣ 𝑣 = 𝑤} → 𝑦 ∈ 𝑡) ↔ ∀𝑦([𝑦 / 𝑣]𝑣 = 𝑤 → 𝑦 ∈ 𝑡)) |
18 | 11, 14, 17 | 3bitri 297 |
. . . . . . . . . . . 12
⊢
(∀𝑥([𝑥 / 𝑣]𝑣 = 𝑤 → 𝑥 ∈ 𝑡) ↔ ∀𝑦([𝑦 / 𝑣]𝑣 = 𝑤 → 𝑦 ∈ 𝑡)) |
19 | | equsb3 2103 |
. . . . . . . . . . . . . 14
⊢ ([𝑦 / 𝑣]𝑣 = 𝑤 ↔ 𝑦 = 𝑤) |
20 | 19 | imbi1i 349 |
. . . . . . . . . . . . 13
⊢ (([𝑦 / 𝑣]𝑣 = 𝑤 → 𝑦 ∈ 𝑡) ↔ (𝑦 = 𝑤 → 𝑦 ∈ 𝑡)) |
21 | 20 | albii 1817 |
. . . . . . . . . . . 12
⊢
(∀𝑦([𝑦 / 𝑣]𝑣 = 𝑤 → 𝑦 ∈ 𝑡) ↔ ∀𝑦(𝑦 = 𝑤 → 𝑦 ∈ 𝑡)) |
22 | 7, 18, 21 | 3bitri 297 |
. . . . . . . . . . 11
⊢
(∀𝑥(𝑥 = 𝑤 → 𝑥 ∈ 𝑡) ↔ ∀𝑦(𝑦 = 𝑤 → 𝑦 ∈ 𝑡)) |
23 | 22 | biimpi 216 |
. . . . . . . . . 10
⊢
(∀𝑥(𝑥 = 𝑤 → 𝑥 ∈ 𝑡) → ∀𝑦(𝑦 = 𝑤 → 𝑦 ∈ 𝑡)) |
24 | | sp 2184 |
. . . . . . . . . 10
⊢
(∀𝑦(𝑦 = 𝑤 → 𝑦 ∈ 𝑡) → (𝑦 = 𝑤 → 𝑦 ∈ 𝑡)) |
25 | 3, 23, 24 | 3syl 18 |
. . . . . . . . 9
⊢ ((𝑥 = 𝑤 ∧ 𝑥 ∈ 𝑡) → (𝑦 = 𝑤 → 𝑦 ∈ 𝑡)) |
26 | 25 | ex 412 |
. . . . . . . 8
⊢ (𝑥 = 𝑤 → (𝑥 ∈ 𝑡 → (𝑦 = 𝑤 → 𝑦 ∈ 𝑡))) |
27 | 26 | com23 86 |
. . . . . . 7
⊢ (𝑥 = 𝑤 → (𝑦 = 𝑤 → (𝑥 ∈ 𝑡 → 𝑦 ∈ 𝑡))) |
28 | 1, 27 | sylcom 30 |
. . . . . 6
⊢ (𝑥 = 𝑦 → (𝑥 = 𝑤 → (𝑥 ∈ 𝑡 → 𝑦 ∈ 𝑡))) |
29 | 28 | com12 32 |
. . . . 5
⊢ (𝑥 = 𝑤 → (𝑥 = 𝑦 → (𝑥 ∈ 𝑡 → 𝑦 ∈ 𝑡))) |
30 | 29 | equcoms 2019 |
. . . 4
⊢ (𝑤 = 𝑥 → (𝑥 = 𝑦 → (𝑥 ∈ 𝑡 → 𝑦 ∈ 𝑡))) |
31 | | ax6ev 1969 |
. . . 4
⊢
∃𝑤 𝑤 = 𝑥 |
32 | 30, 31 | exlimiiv 1930 |
. . 3
⊢ (𝑥 = 𝑦 → (𝑥 ∈ 𝑡 → 𝑦 ∈ 𝑡)) |
33 | | ax9 2122 |
. . . . 5
⊢ (𝑧 = 𝑡 → (𝑥 ∈ 𝑧 → 𝑥 ∈ 𝑡)) |
34 | 33 | equcoms 2019 |
. . . 4
⊢ (𝑡 = 𝑧 → (𝑥 ∈ 𝑧 → 𝑥 ∈ 𝑡)) |
35 | | ax9 2122 |
. . . 4
⊢ (𝑡 = 𝑧 → (𝑦 ∈ 𝑡 → 𝑦 ∈ 𝑧)) |
36 | 34, 35 | imim12d 81 |
. . 3
⊢ (𝑡 = 𝑧 → ((𝑥 ∈ 𝑡 → 𝑦 ∈ 𝑡) → (𝑥 ∈ 𝑧 → 𝑦 ∈ 𝑧))) |
37 | 32, 36 | syl5 34 |
. 2
⊢ (𝑡 = 𝑧 → (𝑥 = 𝑦 → (𝑥 ∈ 𝑧 → 𝑦 ∈ 𝑧))) |
38 | | ax6ev 1969 |
. 2
⊢
∃𝑡 𝑡 = 𝑧 |
39 | 37, 38 | exlimiiv 1930 |
1
⊢ (𝑥 = 𝑦 → (𝑥 ∈ 𝑧 → 𝑦 ∈ 𝑧)) |