Users' Mathboxes Mathbox for Gino Giotto < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cbviinvw2 Structured version   Visualization version   GIF version

Theorem cbviinvw2 36212
Description: Change bound variable and domain in an indexed intersection, using implicit substitution. (Contributed by GG, 14-Aug-2025.)
Hypotheses
Ref Expression
cbviinvw2.1 (𝑥 = 𝑦𝐶 = 𝐷)
cbviinvw2.2 (𝑥 = 𝑦𝐴 = 𝐵)
Assertion
Ref Expression
cbviinvw2 𝑥𝐴 𝐶 = 𝑦𝐵 𝐷
Distinct variable groups:   𝑥,𝑦   𝑦,𝐴   𝑥,𝐵   𝑦,𝐶   𝑥,𝐷
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑦)   𝐶(𝑥)   𝐷(𝑦)

Proof of Theorem cbviinvw2
Dummy variable 𝑡 is distinct from all other variables.
StepHypRef Expression
1 cbviinvw2.2 . . . 4 (𝑥 = 𝑦𝐴 = 𝐵)
2 cbviinvw2.1 . . . . 5 (𝑥 = 𝑦𝐶 = 𝐷)
32eleq2d 2826 . . . 4 (𝑥 = 𝑦 → (𝑡𝐶𝑡𝐷))
41, 3cbvralvw2 36205 . . 3 (∀𝑥𝐴 𝑡𝐶 ↔ ∀𝑦𝐵 𝑡𝐷)
54abbii 2808 . 2 {𝑡 ∣ ∀𝑥𝐴 𝑡𝐶} = {𝑡 ∣ ∀𝑦𝐵 𝑡𝐷}
6 df-iin 4992 . 2 𝑥𝐴 𝐶 = {𝑡 ∣ ∀𝑥𝐴 𝑡𝐶}
7 df-iin 4992 . 2 𝑦𝐵 𝐷 = {𝑡 ∣ ∀𝑦𝐵 𝑡𝐷}
85, 6, 73eqtr4i 2774 1 𝑥𝐴 𝐶 = 𝑦𝐵 𝐷
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2108  {cab 2713  wral 3060   ciin 4990
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2707
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1780  df-sb 2065  df-clab 2714  df-cleq 2728  df-clel 2815  df-ral 3061  df-iin 4992
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator