Users' Mathboxes Mathbox for Gino Giotto < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cbviinvw2 Structured version   Visualization version   GIF version

Theorem cbviinvw2 36209
Description: Change bound variable and domain in an indexed intersection, using implicit substitution. (Contributed by GG, 14-Aug-2025.)
Hypotheses
Ref Expression
cbviinvw2.1 (𝑥 = 𝑦𝐶 = 𝐷)
cbviinvw2.2 (𝑥 = 𝑦𝐴 = 𝐵)
Assertion
Ref Expression
cbviinvw2 𝑥𝐴 𝐶 = 𝑦𝐵 𝐷
Distinct variable groups:   𝑥,𝑦   𝑦,𝐴   𝑥,𝐵   𝑦,𝐶   𝑥,𝐷
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑦)   𝐶(𝑥)   𝐷(𝑦)

Proof of Theorem cbviinvw2
Dummy variable 𝑡 is distinct from all other variables.
StepHypRef Expression
1 cbviinvw2.2 . . . 4 (𝑥 = 𝑦𝐴 = 𝐵)
2 cbviinvw2.1 . . . . 5 (𝑥 = 𝑦𝐶 = 𝐷)
32eleq2d 2819 . . . 4 (𝑥 = 𝑦 → (𝑡𝐶𝑡𝐷))
41, 3cbvralvw2 36202 . . 3 (∀𝑥𝐴 𝑡𝐶 ↔ ∀𝑦𝐵 𝑡𝐷)
54abbii 2801 . 2 {𝑡 ∣ ∀𝑥𝐴 𝑡𝐶} = {𝑡 ∣ ∀𝑦𝐵 𝑡𝐷}
6 df-iin 4974 . 2 𝑥𝐴 𝐶 = {𝑡 ∣ ∀𝑥𝐴 𝑡𝐶}
7 df-iin 4974 . 2 𝑦𝐵 𝐷 = {𝑡 ∣ ∀𝑦𝐵 𝑡𝐷}
85, 6, 73eqtr4i 2767 1 𝑥𝐴 𝐶 = 𝑦𝐵 𝐷
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2107  {cab 2712  wral 3050   ciin 4972
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-ext 2706
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1779  df-sb 2064  df-clab 2713  df-cleq 2726  df-clel 2808  df-ral 3051  df-iin 4974
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator