| Mathbox for Gino Giotto |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > cbviinvw2 | Structured version Visualization version GIF version | ||
| Description: Change bound variable and domain in an indexed intersection, using implicit substitution. (Contributed by GG, 14-Aug-2025.) |
| Ref | Expression |
|---|---|
| cbviinvw2.1 | ⊢ (𝑥 = 𝑦 → 𝐶 = 𝐷) |
| cbviinvw2.2 | ⊢ (𝑥 = 𝑦 → 𝐴 = 𝐵) |
| Ref | Expression |
|---|---|
| cbviinvw2 | ⊢ ∩ 𝑥 ∈ 𝐴 𝐶 = ∩ 𝑦 ∈ 𝐵 𝐷 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cbviinvw2.2 | . . . 4 ⊢ (𝑥 = 𝑦 → 𝐴 = 𝐵) | |
| 2 | cbviinvw2.1 | . . . . 5 ⊢ (𝑥 = 𝑦 → 𝐶 = 𝐷) | |
| 3 | 2 | eleq2d 2819 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝑡 ∈ 𝐶 ↔ 𝑡 ∈ 𝐷)) |
| 4 | 1, 3 | cbvralvw2 36202 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 𝑡 ∈ 𝐶 ↔ ∀𝑦 ∈ 𝐵 𝑡 ∈ 𝐷) |
| 5 | 4 | abbii 2801 | . 2 ⊢ {𝑡 ∣ ∀𝑥 ∈ 𝐴 𝑡 ∈ 𝐶} = {𝑡 ∣ ∀𝑦 ∈ 𝐵 𝑡 ∈ 𝐷} |
| 6 | df-iin 4974 | . 2 ⊢ ∩ 𝑥 ∈ 𝐴 𝐶 = {𝑡 ∣ ∀𝑥 ∈ 𝐴 𝑡 ∈ 𝐶} | |
| 7 | df-iin 4974 | . 2 ⊢ ∩ 𝑦 ∈ 𝐵 𝐷 = {𝑡 ∣ ∀𝑦 ∈ 𝐵 𝑡 ∈ 𝐷} | |
| 8 | 5, 6, 7 | 3eqtr4i 2767 | 1 ⊢ ∩ 𝑥 ∈ 𝐴 𝐶 = ∩ 𝑦 ∈ 𝐵 𝐷 |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2107 {cab 2712 ∀wral 3050 ∩ ciin 4972 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2706 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1779 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-ral 3051 df-iin 4974 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |