![]() |
Mathbox for Gino Giotto |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > cbvsbcvw2 | Structured version Visualization version GIF version |
Description: Change bound variable of a class substitution using implicit substitution. General version of cbvsbcvw 3839. (Contributed by GG, 1-Sep-2025.) |
Ref | Expression |
---|---|
cbvsbcvw2.1 | ⊢ 𝐴 = 𝐵 |
cbvsbcvw2.2 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
cbvsbcvw2 | ⊢ ([𝐴 / 𝑥]𝜑 ↔ [𝐵 / 𝑦]𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cbvsbcvw2.1 | . . 3 ⊢ 𝐴 = 𝐵 | |
2 | cbvsbcvw2.2 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
3 | 2 | cbvabv 2815 | . . 3 ⊢ {𝑥 ∣ 𝜑} = {𝑦 ∣ 𝜓} |
4 | 1, 3 | eleq12i 2837 | . 2 ⊢ (𝐴 ∈ {𝑥 ∣ 𝜑} ↔ 𝐵 ∈ {𝑦 ∣ 𝜓}) |
5 | df-sbc 3805 | . 2 ⊢ ([𝐴 / 𝑥]𝜑 ↔ 𝐴 ∈ {𝑥 ∣ 𝜑}) | |
6 | df-sbc 3805 | . 2 ⊢ ([𝐵 / 𝑦]𝜓 ↔ 𝐵 ∈ {𝑦 ∣ 𝜓}) | |
7 | 4, 5, 6 | 3bitr4i 303 | 1 ⊢ ([𝐴 / 𝑥]𝜑 ↔ [𝐵 / 𝑦]𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 = wceq 1537 ∈ wcel 2108 {cab 2717 [wsbc 3804 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-sbc 3805 |
This theorem is referenced by: cbvcsbvw2 36189 |
Copyright terms: Public domain | W3C validator |