Users' Mathboxes Mathbox for Gino Giotto < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cbvsbcvw2 Structured version   Visualization version   GIF version

Theorem cbvsbcvw2 36225
Description: Change bound variable of a class substitution using implicit substitution. General version of cbvsbcvw 3790. (Contributed by GG, 1-Sep-2025.)
Hypotheses
Ref Expression
cbvsbcvw2.1 𝐴 = 𝐵
cbvsbcvw2.2 (𝑥 = 𝑦 → (𝜑𝜓))
Assertion
Ref Expression
cbvsbcvw2 ([𝐴 / 𝑥]𝜑[𝐵 / 𝑦]𝜓)
Distinct variable groups:   𝑥,𝑦   𝜑,𝑦   𝜓,𝑥
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑦)   𝐴(𝑥,𝑦)   𝐵(𝑥,𝑦)

Proof of Theorem cbvsbcvw2
StepHypRef Expression
1 cbvsbcvw2.1 . . 3 𝐴 = 𝐵
2 cbvsbcvw2.2 . . . 4 (𝑥 = 𝑦 → (𝜑𝜓))
32cbvabv 2800 . . 3 {𝑥𝜑} = {𝑦𝜓}
41, 3eleq12i 2822 . 2 (𝐴 ∈ {𝑥𝜑} ↔ 𝐵 ∈ {𝑦𝜓})
5 df-sbc 3757 . 2 ([𝐴 / 𝑥]𝜑𝐴 ∈ {𝑥𝜑})
6 df-sbc 3757 . 2 ([𝐵 / 𝑦]𝜓𝐵 ∈ {𝑦𝜓})
74, 5, 63bitr4i 303 1 ([𝐴 / 𝑥]𝜑[𝐵 / 𝑦]𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1540  wcel 2109  {cab 2708  [wsbc 3756
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-sbc 3757
This theorem is referenced by:  cbvcsbvw2  36226
  Copyright terms: Public domain W3C validator