Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > cbvsbcvw | Structured version Visualization version GIF version |
Description: Change the bound variable of a class substitution using implicit substitution. Version of cbvsbcv 3754 with a disjoint variable condition, which does not require ax-13 2372. (Contributed by NM, 30-Sep-2008.) (Revised by Gino Giotto, 10-Jan-2024.) |
Ref | Expression |
---|---|
cbvsbcvw.1 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
cbvsbcvw | ⊢ ([𝐴 / 𝑥]𝜑 ↔ [𝐴 / 𝑦]𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cbvsbcvw.1 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
2 | 1 | cbvabv 2811 | . . 3 ⊢ {𝑥 ∣ 𝜑} = {𝑦 ∣ 𝜓} |
3 | 2 | eleq2i 2830 | . 2 ⊢ (𝐴 ∈ {𝑥 ∣ 𝜑} ↔ 𝐴 ∈ {𝑦 ∣ 𝜓}) |
4 | df-sbc 3718 | . 2 ⊢ ([𝐴 / 𝑥]𝜑 ↔ 𝐴 ∈ {𝑥 ∣ 𝜑}) | |
5 | df-sbc 3718 | . 2 ⊢ ([𝐴 / 𝑦]𝜓 ↔ 𝐴 ∈ {𝑦 ∣ 𝜓}) | |
6 | 3, 4, 5 | 3bitr4i 303 | 1 ⊢ ([𝐴 / 𝑥]𝜑 ↔ [𝐴 / 𝑦]𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∈ wcel 2106 {cab 2715 [wsbc 3717 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-sbc 3718 |
This theorem is referenced by: fpwwe2cbv 10384 frpoins3xpg 33784 frpoins3xp3g 33785 reuf1odnf 44566 |
Copyright terms: Public domain | W3C validator |