MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cbvsbcvw Structured version   Visualization version   GIF version

Theorem cbvsbcvw 3752
Description: Change the bound variable of a class substitution using implicit substitution. Version of cbvsbcv 3754 with a disjoint variable condition, which does not require ax-13 2372. (Contributed by NM, 30-Sep-2008.) (Revised by Gino Giotto, 10-Jan-2024.)
Hypothesis
Ref Expression
cbvsbcvw.1 (𝑥 = 𝑦 → (𝜑𝜓))
Assertion
Ref Expression
cbvsbcvw ([𝐴 / 𝑥]𝜑[𝐴 / 𝑦]𝜓)
Distinct variable groups:   𝜑,𝑦   𝜓,𝑥   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑦)   𝐴(𝑥,𝑦)

Proof of Theorem cbvsbcvw
StepHypRef Expression
1 cbvsbcvw.1 . . . 4 (𝑥 = 𝑦 → (𝜑𝜓))
21cbvabv 2811 . . 3 {𝑥𝜑} = {𝑦𝜓}
32eleq2i 2830 . 2 (𝐴 ∈ {𝑥𝜑} ↔ 𝐴 ∈ {𝑦𝜓})
4 df-sbc 3718 . 2 ([𝐴 / 𝑥]𝜑𝐴 ∈ {𝑥𝜑})
5 df-sbc 3718 . 2 ([𝐴 / 𝑦]𝜓𝐴 ∈ {𝑦𝜓})
63, 4, 53bitr4i 303 1 ([𝐴 / 𝑥]𝜑[𝐴 / 𝑦]𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wcel 2106  {cab 2715  [wsbc 3717
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-sbc 3718
This theorem is referenced by:  fpwwe2cbv  10384  frpoins3xpg  33784  frpoins3xp3g  33785  reuf1odnf  44566
  Copyright terms: Public domain W3C validator