| Mathbox for Gino Giotto |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > cbvcsbvw2 | Structured version Visualization version GIF version | ||
| Description: Change bound variable of a proper substitution into a class using implicit substitution. General version of cbvcsbv 3910. (Contributed by GG, 1-Sep-2025.) |
| Ref | Expression |
|---|---|
| cbvcsbvw2.1 | ⊢ 𝐴 = 𝐵 |
| cbvcsbvw2.2 | ⊢ (𝑥 = 𝑦 → 𝐶 = 𝐷) |
| Ref | Expression |
|---|---|
| cbvcsbvw2 | ⊢ ⦋𝐴 / 𝑥⦌𝐶 = ⦋𝐵 / 𝑦⦌𝐷 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cbvcsbvw2.1 | . . . 4 ⊢ 𝐴 = 𝐵 | |
| 2 | cbvcsbvw2.2 | . . . . 5 ⊢ (𝑥 = 𝑦 → 𝐶 = 𝐷) | |
| 3 | 2 | eleq2d 2826 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝑡 ∈ 𝐶 ↔ 𝑡 ∈ 𝐷)) |
| 4 | 1, 3 | cbvsbcvw2 36209 | . . 3 ⊢ ([𝐴 / 𝑥]𝑡 ∈ 𝐶 ↔ [𝐵 / 𝑦]𝑡 ∈ 𝐷) |
| 5 | 4 | abbii 2808 | . 2 ⊢ {𝑡 ∣ [𝐴 / 𝑥]𝑡 ∈ 𝐶} = {𝑡 ∣ [𝐵 / 𝑦]𝑡 ∈ 𝐷} |
| 6 | df-csb 3899 | . 2 ⊢ ⦋𝐴 / 𝑥⦌𝐶 = {𝑡 ∣ [𝐴 / 𝑥]𝑡 ∈ 𝐶} | |
| 7 | df-csb 3899 | . 2 ⊢ ⦋𝐵 / 𝑦⦌𝐷 = {𝑡 ∣ [𝐵 / 𝑦]𝑡 ∈ 𝐷} | |
| 8 | 5, 6, 7 | 3eqtr4i 2774 | 1 ⊢ ⦋𝐴 / 𝑥⦌𝐶 = ⦋𝐵 / 𝑦⦌𝐷 |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2108 {cab 2713 [wsbc 3787 ⦋csb 3898 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2728 df-clel 2815 df-sbc 3788 df-csb 3899 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |