Users' Mathboxes Mathbox for Gino Giotto < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cbvcsbvw2 Structured version   Visualization version   GIF version

Theorem cbvcsbvw2 36178
Description: Change bound variable of a proper substitution into a class using implicit substitution. General version of cbvcsbv 3884. (Contributed by GG, 1-Sep-2025.)
Hypotheses
Ref Expression
cbvcsbvw2.1 𝐴 = 𝐵
cbvcsbvw2.2 (𝑥 = 𝑦𝐶 = 𝐷)
Assertion
Ref Expression
cbvcsbvw2 𝐴 / 𝑥𝐶 = 𝐵 / 𝑦𝐷
Distinct variable groups:   𝑥,𝑦   𝑦,𝐶   𝑥,𝐷
Allowed substitution hints:   𝐴(𝑥,𝑦)   𝐵(𝑥,𝑦)   𝐶(𝑥)   𝐷(𝑦)

Proof of Theorem cbvcsbvw2
Dummy variable 𝑡 is distinct from all other variables.
StepHypRef Expression
1 cbvcsbvw2.1 . . . 4 𝐴 = 𝐵
2 cbvcsbvw2.2 . . . . 5 (𝑥 = 𝑦𝐶 = 𝐷)
32eleq2d 2819 . . . 4 (𝑥 = 𝑦 → (𝑡𝐶𝑡𝐷))
41, 3cbvsbcvw2 36177 . . 3 ([𝐴 / 𝑥]𝑡𝐶[𝐵 / 𝑦]𝑡𝐷)
54abbii 2801 . 2 {𝑡[𝐴 / 𝑥]𝑡𝐶} = {𝑡[𝐵 / 𝑦]𝑡𝐷}
6 df-csb 3873 . 2 𝐴 / 𝑥𝐶 = {𝑡[𝐴 / 𝑥]𝑡𝐶}
7 df-csb 3873 . 2 𝐵 / 𝑦𝐷 = {𝑡[𝐵 / 𝑦]𝑡𝐷}
85, 6, 73eqtr4i 2767 1 𝐴 / 𝑥𝐶 = 𝐵 / 𝑦𝐷
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2107  {cab 2712  [wsbc 3763  csb 3872
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-ext 2706
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1779  df-sb 2064  df-clab 2713  df-cleq 2726  df-clel 2808  df-sbc 3764  df-csb 3873
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator