MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eleq12i Structured version   Visualization version   GIF version

Theorem eleq12i 2825
Description: Inference from equality to equivalence of membership. (Contributed by NM, 31-May-1994.)
Hypotheses
Ref Expression
eleq1i.1 𝐴 = 𝐵
eleq12i.2 𝐶 = 𝐷
Assertion
Ref Expression
eleq12i (𝐴𝐶𝐵𝐷)

Proof of Theorem eleq12i
StepHypRef Expression
1 eleq12i.2 . . 3 𝐶 = 𝐷
21eleq2i 2824 . 2 (𝐴𝐶𝐴𝐷)
3 eleq1i.1 . . 3 𝐴 = 𝐵
43eleq1i 2823 . 2 (𝐴𝐷𝐵𝐷)
52, 4bitri 275 1 (𝐴𝐶𝐵𝐷)
Colors of variables: wff setvar class
Syntax hints:  wb 205   = wceq 1540  wcel 2105
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-ext 2702
This theorem depends on definitions:  df-bi 206  df-an 396  df-ex 1781  df-cleq 2723  df-clel 2809
This theorem is referenced by:  sbcel12  4408  smndex1n0mnd  18835  zclmncvs  24996  gausslemma2dlem4  27216  bnj98  34343  elmpst  34992  elmpps  35029  oaordnrex  42510  omnord1ex  42519  oenord1ex  42530  unirnmapsn  44374
  Copyright terms: Public domain W3C validator