MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eleq12i Structured version   Visualization version   GIF version

Theorem eleq12i 2824
Description: Inference from equality to equivalence of membership. (Contributed by NM, 31-May-1994.)
Hypotheses
Ref Expression
eleq1i.1 𝐴 = 𝐵
eleq12i.2 𝐶 = 𝐷
Assertion
Ref Expression
eleq12i (𝐴𝐶𝐵𝐷)

Proof of Theorem eleq12i
StepHypRef Expression
1 eleq12i.2 . . 3 𝐶 = 𝐷
21eleq2i 2823 . 2 (𝐴𝐶𝐴𝐷)
3 eleq1i.1 . . 3 𝐴 = 𝐵
43eleq1i 2822 . 2 (𝐴𝐷𝐵𝐷)
52, 4bitri 275 1 (𝐴𝐶𝐵𝐷)
Colors of variables: wff setvar class
Syntax hints:  wb 206   = wceq 1541  wcel 2111
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1781  df-cleq 2723  df-clel 2806
This theorem is referenced by:  sbcel12  4358  smndex1n0mnd  18820  zclmncvs  25075  gausslemma2dlem4  27307  bnj98  34879  elmpst  35580  elmpps  35617  sbceqbii  36235  cbvsbcvw2  36274  oaordnrex  43398  omnord1ex  43407  oenord1ex  43418  wfaxpow  45100  unirnmapsn  45321  gpgprismgr4cycllem8  48212
  Copyright terms: Public domain W3C validator