Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > eleq12i | Structured version Visualization version GIF version |
Description: Inference from equality to equivalence of membership. (Contributed by NM, 31-May-1994.) |
Ref | Expression |
---|---|
eleq1i.1 | ⊢ 𝐴 = 𝐵 |
eleq12i.2 | ⊢ 𝐶 = 𝐷 |
Ref | Expression |
---|---|
eleq12i | ⊢ (𝐴 ∈ 𝐶 ↔ 𝐵 ∈ 𝐷) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq12i.2 | . . 3 ⊢ 𝐶 = 𝐷 | |
2 | 1 | eleq2i 2830 | . 2 ⊢ (𝐴 ∈ 𝐶 ↔ 𝐴 ∈ 𝐷) |
3 | eleq1i.1 | . . 3 ⊢ 𝐴 = 𝐵 | |
4 | 3 | eleq1i 2829 | . 2 ⊢ (𝐴 ∈ 𝐷 ↔ 𝐵 ∈ 𝐷) |
5 | 2, 4 | bitri 274 | 1 ⊢ (𝐴 ∈ 𝐶 ↔ 𝐵 ∈ 𝐷) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 = wceq 1539 ∈ wcel 2106 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-ex 1783 df-cleq 2730 df-clel 2816 |
This theorem is referenced by: sbcel12 4342 smndex1n0mnd 18551 zclmncvs 24312 gausslemma2dlem4 26517 bnj98 32847 elmpst 33498 elmpps 33535 unirnmapsn 42754 |
Copyright terms: Public domain | W3C validator |