MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eleq12i Structured version   Visualization version   GIF version

Theorem eleq12i 2822
Description: Inference from equality to equivalence of membership. (Contributed by NM, 31-May-1994.)
Hypotheses
Ref Expression
eleq1i.1 𝐴 = 𝐵
eleq12i.2 𝐶 = 𝐷
Assertion
Ref Expression
eleq12i (𝐴𝐶𝐵𝐷)

Proof of Theorem eleq12i
StepHypRef Expression
1 eleq12i.2 . . 3 𝐶 = 𝐷
21eleq2i 2821 . 2 (𝐴𝐶𝐴𝐷)
3 eleq1i.1 . . 3 𝐴 = 𝐵
43eleq1i 2820 . 2 (𝐴𝐷𝐵𝐷)
52, 4bitri 274 1 (𝐴𝐶𝐵𝐷)
Colors of variables: wff setvar class
Syntax hints:  wb 205   = wceq 1533  wcel 2098
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-ext 2699
This theorem depends on definitions:  df-bi 206  df-an 395  df-ex 1774  df-cleq 2720  df-clel 2806
This theorem is referenced by:  sbcel12  4412  smndex1n0mnd  18871  zclmncvs  25096  gausslemma2dlem4  27322  bnj98  34531  elmpst  35179  elmpps  35216  oaordnrex  42755  omnord1ex  42764  oenord1ex  42775  unirnmapsn  44617
  Copyright terms: Public domain W3C validator