| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eleq12i | Structured version Visualization version GIF version | ||
| Description: Inference from equality to equivalence of membership. (Contributed by NM, 31-May-1994.) |
| Ref | Expression |
|---|---|
| eleq1i.1 | ⊢ 𝐴 = 𝐵 |
| eleq12i.2 | ⊢ 𝐶 = 𝐷 |
| Ref | Expression |
|---|---|
| eleq12i | ⊢ (𝐴 ∈ 𝐶 ↔ 𝐵 ∈ 𝐷) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq12i.2 | . . 3 ⊢ 𝐶 = 𝐷 | |
| 2 | 1 | eleq2i 2820 | . 2 ⊢ (𝐴 ∈ 𝐶 ↔ 𝐴 ∈ 𝐷) |
| 3 | eleq1i.1 | . . 3 ⊢ 𝐴 = 𝐵 | |
| 4 | 3 | eleq1i 2819 | . 2 ⊢ (𝐴 ∈ 𝐷 ↔ 𝐵 ∈ 𝐷) |
| 5 | 2, 4 | bitri 275 | 1 ⊢ (𝐴 ∈ 𝐶 ↔ 𝐵 ∈ 𝐷) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1540 ∈ wcel 2109 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2721 df-clel 2803 |
| This theorem is referenced by: sbcel12 4374 smndex1n0mnd 18839 zclmncvs 25048 gausslemma2dlem4 27280 bnj98 34857 elmpst 35523 elmpps 35560 sbceqbii 36179 cbvsbcvw2 36218 oaordnrex 43284 omnord1ex 43293 oenord1ex 43304 wfaxpow 44987 unirnmapsn 45208 gpgprismgr4cycllem8 48092 |
| Copyright terms: Public domain | W3C validator |