![]() |
Mathbox for Gino Giotto |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > cbvsbdavw2 | Structured version Visualization version GIF version |
Description: Change bound variable in proper substitution. General version of cbvsbdavw 36212. Deduction form. (Contributed by GG, 14-Aug-2025.) |
Ref | Expression |
---|---|
cbvsbdavw2.1 | ⊢ (𝜑 → 𝑧 = 𝑤) |
cbvsbdavw2.2 | ⊢ ((𝜑 ∧ 𝑥 = 𝑦) → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
cbvsbdavw2 | ⊢ (𝜑 → ([𝑧 / 𝑥]𝜓 ↔ [𝑤 / 𝑦]𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cbvsbdavw2.1 | . . . . 5 ⊢ (𝜑 → 𝑧 = 𝑤) | |
2 | equequ2 2025 | . . . . 5 ⊢ (𝑧 = 𝑤 → (𝑡 = 𝑧 ↔ 𝑡 = 𝑤)) | |
3 | 1, 2 | syl 17 | . . . 4 ⊢ (𝜑 → (𝑡 = 𝑧 ↔ 𝑡 = 𝑤)) |
4 | equequ1 2024 | . . . . . . 7 ⊢ (𝑥 = 𝑦 → (𝑥 = 𝑡 ↔ 𝑦 = 𝑡)) | |
5 | 4 | adantl 481 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 = 𝑦) → (𝑥 = 𝑡 ↔ 𝑦 = 𝑡)) |
6 | cbvsbdavw2.2 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 = 𝑦) → (𝜓 ↔ 𝜒)) | |
7 | 5, 6 | imbi12d 344 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 = 𝑦) → ((𝑥 = 𝑡 → 𝜓) ↔ (𝑦 = 𝑡 → 𝜒))) |
8 | 7 | cbvaldvaw 2037 | . . . 4 ⊢ (𝜑 → (∀𝑥(𝑥 = 𝑡 → 𝜓) ↔ ∀𝑦(𝑦 = 𝑡 → 𝜒))) |
9 | 3, 8 | imbi12d 344 | . . 3 ⊢ (𝜑 → ((𝑡 = 𝑧 → ∀𝑥(𝑥 = 𝑡 → 𝜓)) ↔ (𝑡 = 𝑤 → ∀𝑦(𝑦 = 𝑡 → 𝜒)))) |
10 | 9 | albidv 1919 | . 2 ⊢ (𝜑 → (∀𝑡(𝑡 = 𝑧 → ∀𝑥(𝑥 = 𝑡 → 𝜓)) ↔ ∀𝑡(𝑡 = 𝑤 → ∀𝑦(𝑦 = 𝑡 → 𝜒)))) |
11 | df-sb 2065 | . 2 ⊢ ([𝑧 / 𝑥]𝜓 ↔ ∀𝑡(𝑡 = 𝑧 → ∀𝑥(𝑥 = 𝑡 → 𝜓))) | |
12 | df-sb 2065 | . 2 ⊢ ([𝑤 / 𝑦]𝜒 ↔ ∀𝑡(𝑡 = 𝑤 → ∀𝑦(𝑦 = 𝑡 → 𝜒))) | |
13 | 10, 11, 12 | 3bitr4g 314 | 1 ⊢ (𝜑 → ([𝑧 / 𝑥]𝜓 ↔ [𝑤 / 𝑦]𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∀wal 1535 [wsb 2064 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1778 df-sb 2065 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |