Users' Mathboxes Mathbox for Gino Giotto < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cbvsbdavw2 Structured version   Visualization version   GIF version

Theorem cbvsbdavw2 36213
Description: Change bound variable in proper substitution. General version of cbvsbdavw 36212. Deduction form. (Contributed by GG, 14-Aug-2025.)
Hypotheses
Ref Expression
cbvsbdavw2.1 (𝜑𝑧 = 𝑤)
cbvsbdavw2.2 ((𝜑𝑥 = 𝑦) → (𝜓𝜒))
Assertion
Ref Expression
cbvsbdavw2 (𝜑 → ([𝑧 / 𝑥]𝜓 ↔ [𝑤 / 𝑦]𝜒))
Distinct variable groups:   𝜑,𝑥,𝑦   𝜓,𝑦   𝜒,𝑥
Allowed substitution hints:   𝜑(𝑧,𝑤)   𝜓(𝑥,𝑧,𝑤)   𝜒(𝑦,𝑧,𝑤)

Proof of Theorem cbvsbdavw2
Dummy variable 𝑡 is distinct from all other variables.
StepHypRef Expression
1 cbvsbdavw2.1 . . . . 5 (𝜑𝑧 = 𝑤)
2 equequ2 2025 . . . . 5 (𝑧 = 𝑤 → (𝑡 = 𝑧𝑡 = 𝑤))
31, 2syl 17 . . . 4 (𝜑 → (𝑡 = 𝑧𝑡 = 𝑤))
4 equequ1 2024 . . . . . . 7 (𝑥 = 𝑦 → (𝑥 = 𝑡𝑦 = 𝑡))
54adantl 481 . . . . . 6 ((𝜑𝑥 = 𝑦) → (𝑥 = 𝑡𝑦 = 𝑡))
6 cbvsbdavw2.2 . . . . . 6 ((𝜑𝑥 = 𝑦) → (𝜓𝜒))
75, 6imbi12d 344 . . . . 5 ((𝜑𝑥 = 𝑦) → ((𝑥 = 𝑡𝜓) ↔ (𝑦 = 𝑡𝜒)))
87cbvaldvaw 2037 . . . 4 (𝜑 → (∀𝑥(𝑥 = 𝑡𝜓) ↔ ∀𝑦(𝑦 = 𝑡𝜒)))
93, 8imbi12d 344 . . 3 (𝜑 → ((𝑡 = 𝑧 → ∀𝑥(𝑥 = 𝑡𝜓)) ↔ (𝑡 = 𝑤 → ∀𝑦(𝑦 = 𝑡𝜒))))
109albidv 1919 . 2 (𝜑 → (∀𝑡(𝑡 = 𝑧 → ∀𝑥(𝑥 = 𝑡𝜓)) ↔ ∀𝑡(𝑡 = 𝑤 → ∀𝑦(𝑦 = 𝑡𝜒))))
11 df-sb 2065 . 2 ([𝑧 / 𝑥]𝜓 ↔ ∀𝑡(𝑡 = 𝑧 → ∀𝑥(𝑥 = 𝑡𝜓)))
12 df-sb 2065 . 2 ([𝑤 / 𝑦]𝜒 ↔ ∀𝑡(𝑡 = 𝑤 → ∀𝑦(𝑦 = 𝑡𝜒)))
1310, 11, 123bitr4g 314 1 (𝜑 → ([𝑧 / 𝑥]𝜓 ↔ [𝑤 / 𝑦]𝜒))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wal 1535  [wsb 2064
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1778  df-sb 2065
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator