| Mathbox for Gino Giotto |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > cbvsbdavw | Structured version Visualization version GIF version | ||
| Description: Change bound variable in proper substitution. Deduction form. (Contributed by GG, 14-Aug-2025.) |
| Ref | Expression |
|---|---|
| cbvsbdavw.1 | ⊢ ((𝜑 ∧ 𝑥 = 𝑦) → (𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| cbvsbdavw | ⊢ (𝜑 → ([𝑧 / 𝑥]𝜓 ↔ [𝑧 / 𝑦]𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | equequ1 2023 | . . . . . . 7 ⊢ (𝑥 = 𝑦 → (𝑥 = 𝑡 ↔ 𝑦 = 𝑡)) | |
| 2 | 1 | adantl 481 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 = 𝑦) → (𝑥 = 𝑡 ↔ 𝑦 = 𝑡)) |
| 3 | cbvsbdavw.1 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 = 𝑦) → (𝜓 ↔ 𝜒)) | |
| 4 | 2, 3 | imbi12d 344 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 = 𝑦) → ((𝑥 = 𝑡 → 𝜓) ↔ (𝑦 = 𝑡 → 𝜒))) |
| 5 | 4 | cbvaldvaw 2036 | . . . 4 ⊢ (𝜑 → (∀𝑥(𝑥 = 𝑡 → 𝜓) ↔ ∀𝑦(𝑦 = 𝑡 → 𝜒))) |
| 6 | 5 | imbi2d 340 | . . 3 ⊢ (𝜑 → ((𝑡 = 𝑧 → ∀𝑥(𝑥 = 𝑡 → 𝜓)) ↔ (𝑡 = 𝑧 → ∀𝑦(𝑦 = 𝑡 → 𝜒)))) |
| 7 | 6 | albidv 1919 | . 2 ⊢ (𝜑 → (∀𝑡(𝑡 = 𝑧 → ∀𝑥(𝑥 = 𝑡 → 𝜓)) ↔ ∀𝑡(𝑡 = 𝑧 → ∀𝑦(𝑦 = 𝑡 → 𝜒)))) |
| 8 | df-sb 2064 | . 2 ⊢ ([𝑧 / 𝑥]𝜓 ↔ ∀𝑡(𝑡 = 𝑧 → ∀𝑥(𝑥 = 𝑡 → 𝜓))) | |
| 9 | df-sb 2064 | . 2 ⊢ ([𝑧 / 𝑦]𝜒 ↔ ∀𝑡(𝑡 = 𝑧 → ∀𝑦(𝑦 = 𝑡 → 𝜒))) | |
| 10 | 7, 8, 9 | 3bitr4g 314 | 1 ⊢ (𝜑 → ([𝑧 / 𝑥]𝜓 ↔ [𝑧 / 𝑦]𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∀wal 1537 [wsb 2063 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1779 df-sb 2064 |
| This theorem is referenced by: cbvabdavw 36195 |
| Copyright terms: Public domain | W3C validator |