Users' Mathboxes Mathbox for Gino Giotto < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cbvsbdavw Structured version   Visualization version   GIF version

Theorem cbvsbdavw 36212
Description: Change bound variable in proper substitution. Deduction form. (Contributed by GG, 14-Aug-2025.)
Hypothesis
Ref Expression
cbvsbdavw.1 ((𝜑𝑥 = 𝑦) → (𝜓𝜒))
Assertion
Ref Expression
cbvsbdavw (𝜑 → ([𝑧 / 𝑥]𝜓 ↔ [𝑧 / 𝑦]𝜒))
Distinct variable groups:   𝜑,𝑥,𝑦   𝜓,𝑦   𝜒,𝑥
Allowed substitution hints:   𝜑(𝑧)   𝜓(𝑥,𝑧)   𝜒(𝑦,𝑧)

Proof of Theorem cbvsbdavw
Dummy variable 𝑡 is distinct from all other variables.
StepHypRef Expression
1 equequ1 2024 . . . . . . 7 (𝑥 = 𝑦 → (𝑥 = 𝑡𝑦 = 𝑡))
21adantl 481 . . . . . 6 ((𝜑𝑥 = 𝑦) → (𝑥 = 𝑡𝑦 = 𝑡))
3 cbvsbdavw.1 . . . . . 6 ((𝜑𝑥 = 𝑦) → (𝜓𝜒))
42, 3imbi12d 344 . . . . 5 ((𝜑𝑥 = 𝑦) → ((𝑥 = 𝑡𝜓) ↔ (𝑦 = 𝑡𝜒)))
54cbvaldvaw 2037 . . . 4 (𝜑 → (∀𝑥(𝑥 = 𝑡𝜓) ↔ ∀𝑦(𝑦 = 𝑡𝜒)))
65imbi2d 340 . . 3 (𝜑 → ((𝑡 = 𝑧 → ∀𝑥(𝑥 = 𝑡𝜓)) ↔ (𝑡 = 𝑧 → ∀𝑦(𝑦 = 𝑡𝜒))))
76albidv 1919 . 2 (𝜑 → (∀𝑡(𝑡 = 𝑧 → ∀𝑥(𝑥 = 𝑡𝜓)) ↔ ∀𝑡(𝑡 = 𝑧 → ∀𝑦(𝑦 = 𝑡𝜒))))
8 df-sb 2065 . 2 ([𝑧 / 𝑥]𝜓 ↔ ∀𝑡(𝑡 = 𝑧 → ∀𝑥(𝑥 = 𝑡𝜓)))
9 df-sb 2065 . 2 ([𝑧 / 𝑦]𝜒 ↔ ∀𝑡(𝑡 = 𝑧 → ∀𝑦(𝑦 = 𝑡𝜒)))
107, 8, 93bitr4g 314 1 (𝜑 → ([𝑧 / 𝑥]𝜓 ↔ [𝑧 / 𝑦]𝜒))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wal 1535  [wsb 2064
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1778  df-sb 2065
This theorem is referenced by:  cbvabdavw  36214
  Copyright terms: Public domain W3C validator