MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ceqsal1t Structured version   Visualization version   GIF version

Theorem ceqsal1t 3522
Description: One direction of ceqsalt 3523 is based on fewer assumptions and fewer axioms. It is at the same time the reverse direction of vtoclgft 3564. Extracted from a proof of ceqsalt 3523. (Contributed by Wolf Lammen, 25-Mar-2025.)
Assertion
Ref Expression
ceqsal1t ((Ⅎ𝑥𝜓 ∧ ∀𝑥(𝑥 = 𝐴 → (𝜑𝜓))) → (𝜓 → ∀𝑥(𝑥 = 𝐴𝜑)))

Proof of Theorem ceqsal1t
StepHypRef Expression
1 biimpr 220 . . . . . 6 ((𝜑𝜓) → (𝜓𝜑))
21imim2i 16 . . . . 5 ((𝑥 = 𝐴 → (𝜑𝜓)) → (𝑥 = 𝐴 → (𝜓𝜑)))
32com23 86 . . . 4 ((𝑥 = 𝐴 → (𝜑𝜓)) → (𝜓 → (𝑥 = 𝐴𝜑)))
43alimi 1809 . . 3 (∀𝑥(𝑥 = 𝐴 → (𝜑𝜓)) → ∀𝑥(𝜓 → (𝑥 = 𝐴𝜑)))
5 19.21t 2207 . . 3 (Ⅎ𝑥𝜓 → (∀𝑥(𝜓 → (𝑥 = 𝐴𝜑)) ↔ (𝜓 → ∀𝑥(𝑥 = 𝐴𝜑))))
64, 5imbitrid 244 . 2 (Ⅎ𝑥𝜓 → (∀𝑥(𝑥 = 𝐴 → (𝜑𝜓)) → (𝜓 → ∀𝑥(𝑥 = 𝐴𝜑))))
76imp 406 1 ((Ⅎ𝑥𝜓 ∧ ∀𝑥(𝑥 = 𝐴 → (𝜑𝜓))) → (𝜓 → ∀𝑥(𝑥 = 𝐴𝜑)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wal 1535   = wceq 1537  wnf 1781
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-12 2178
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1778  df-nf 1782
This theorem is referenced by:  ceqsalt  3523
  Copyright terms: Public domain W3C validator