| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ceqsal1t | Structured version Visualization version GIF version | ||
| Description: One direction of ceqsalt 3470 is based on fewer assumptions and fewer axioms. It is at the same time the reverse direction of vtoclgft 3505. Extracted from a proof of ceqsalt 3470. (Contributed by Wolf Lammen, 25-Mar-2025.) |
| Ref | Expression |
|---|---|
| ceqsal1t | ⊢ ((Ⅎ𝑥𝜓 ∧ ∀𝑥(𝑥 = 𝐴 → (𝜑 ↔ 𝜓))) → (𝜓 → ∀𝑥(𝑥 = 𝐴 → 𝜑))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | biimpr 220 | . . . . . 6 ⊢ ((𝜑 ↔ 𝜓) → (𝜓 → 𝜑)) | |
| 2 | 1 | imim2i 16 | . . . . 5 ⊢ ((𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) → (𝑥 = 𝐴 → (𝜓 → 𝜑))) |
| 3 | 2 | com23 86 | . . . 4 ⊢ ((𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) → (𝜓 → (𝑥 = 𝐴 → 𝜑))) |
| 4 | 3 | alimi 1812 | . . 3 ⊢ (∀𝑥(𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) → ∀𝑥(𝜓 → (𝑥 = 𝐴 → 𝜑))) |
| 5 | 19.21t 2209 | . . 3 ⊢ (Ⅎ𝑥𝜓 → (∀𝑥(𝜓 → (𝑥 = 𝐴 → 𝜑)) ↔ (𝜓 → ∀𝑥(𝑥 = 𝐴 → 𝜑)))) | |
| 6 | 4, 5 | imbitrid 244 | . 2 ⊢ (Ⅎ𝑥𝜓 → (∀𝑥(𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) → (𝜓 → ∀𝑥(𝑥 = 𝐴 → 𝜑)))) |
| 7 | 6 | imp 406 | 1 ⊢ ((Ⅎ𝑥𝜓 ∧ ∀𝑥(𝑥 = 𝐴 → (𝜑 ↔ 𝜓))) → (𝜓 → ∀𝑥(𝑥 = 𝐴 → 𝜑))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∀wal 1539 = wceq 1541 Ⅎwnf 1784 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-12 2180 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-nf 1785 |
| This theorem is referenced by: ceqsalt 3470 |
| Copyright terms: Public domain | W3C validator |