|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > rexcom4b | Structured version Visualization version GIF version | ||
| Description: Specialized existential commutation lemma. (Contributed by Jeff Madsen, 1-Jun-2011.) | 
| Ref | Expression | 
|---|---|
| rexcom4b.1 | ⊢ 𝐵 ∈ V | 
| Ref | Expression | 
|---|---|
| rexcom4b | ⊢ (∃𝑥∃𝑦 ∈ 𝐴 (𝜑 ∧ 𝑥 = 𝐵) ↔ ∃𝑦 ∈ 𝐴 𝜑) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | rexcom4a 3291 | . 2 ⊢ (∃𝑥∃𝑦 ∈ 𝐴 (𝜑 ∧ 𝑥 = 𝐵) ↔ ∃𝑦 ∈ 𝐴 (𝜑 ∧ ∃𝑥 𝑥 = 𝐵)) | |
| 2 | rexcom4b.1 | . . . . 5 ⊢ 𝐵 ∈ V | |
| 3 | 2 | isseti 3497 | . . . 4 ⊢ ∃𝑥 𝑥 = 𝐵 | 
| 4 | 3 | biantru 529 | . . 3 ⊢ (𝜑 ↔ (𝜑 ∧ ∃𝑥 𝑥 = 𝐵)) | 
| 5 | 4 | rexbii 3093 | . 2 ⊢ (∃𝑦 ∈ 𝐴 𝜑 ↔ ∃𝑦 ∈ 𝐴 (𝜑 ∧ ∃𝑥 𝑥 = 𝐵)) | 
| 6 | 1, 5 | bitr4i 278 | 1 ⊢ (∃𝑥∃𝑦 ∈ 𝐴 (𝜑 ∧ 𝑥 = 𝐵) ↔ ∃𝑦 ∈ 𝐴 𝜑) | 
| Colors of variables: wff setvar class | 
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1539 ∃wex 1778 ∈ wcel 2107 ∃wrex 3069 Vcvv 3479 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-11 2156 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1779 df-clel 2815 df-rex 3070 | 
| This theorem is referenced by: islshpat 39019 | 
| Copyright terms: Public domain | W3C validator |