MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rexcom4b Structured version   Visualization version   GIF version

Theorem rexcom4b 3512
Description: Specialized existential commutation lemma. (Contributed by Jeff Madsen, 1-Jun-2011.)
Hypothesis
Ref Expression
rexcom4b.1 𝐵 ∈ V
Assertion
Ref Expression
rexcom4b (∃𝑥𝑦𝐴 (𝜑𝑥 = 𝐵) ↔ ∃𝑦𝐴 𝜑)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝑦   𝜑,𝑥
Allowed substitution hints:   𝜑(𝑦)   𝐴(𝑦)   𝐵(𝑦)

Proof of Theorem rexcom4b
StepHypRef Expression
1 rexcom4a 3291 . 2 (∃𝑥𝑦𝐴 (𝜑𝑥 = 𝐵) ↔ ∃𝑦𝐴 (𝜑 ∧ ∃𝑥 𝑥 = 𝐵))
2 rexcom4b.1 . . . . 5 𝐵 ∈ V
32isseti 3497 . . . 4 𝑥 𝑥 = 𝐵
43biantru 529 . . 3 (𝜑 ↔ (𝜑 ∧ ∃𝑥 𝑥 = 𝐵))
54rexbii 3093 . 2 (∃𝑦𝐴 𝜑 ↔ ∃𝑦𝐴 (𝜑 ∧ ∃𝑥 𝑥 = 𝐵))
61, 5bitr4i 278 1 (∃𝑥𝑦𝐴 (𝜑𝑥 = 𝐵) ↔ ∃𝑦𝐴 𝜑)
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1539  wex 1778  wcel 2107  wrex 3069  Vcvv 3479
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-11 2156
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1779  df-clel 2815  df-rex 3070
This theorem is referenced by:  islshpat  39019
  Copyright terms: Public domain W3C validator