| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rexcom4b | Structured version Visualization version GIF version | ||
| Description: Specialized existential commutation lemma. (Contributed by Jeff Madsen, 1-Jun-2011.) |
| Ref | Expression |
|---|---|
| rexcom4b.1 | ⊢ 𝐵 ∈ V |
| Ref | Expression |
|---|---|
| rexcom4b | ⊢ (∃𝑥∃𝑦 ∈ 𝐴 (𝜑 ∧ 𝑥 = 𝐵) ↔ ∃𝑦 ∈ 𝐴 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rexcom4a 3262 | . 2 ⊢ (∃𝑥∃𝑦 ∈ 𝐴 (𝜑 ∧ 𝑥 = 𝐵) ↔ ∃𝑦 ∈ 𝐴 (𝜑 ∧ ∃𝑥 𝑥 = 𝐵)) | |
| 2 | rexcom4b.1 | . . . . 5 ⊢ 𝐵 ∈ V | |
| 3 | 2 | isseti 3454 | . . . 4 ⊢ ∃𝑥 𝑥 = 𝐵 |
| 4 | 3 | biantru 529 | . . 3 ⊢ (𝜑 ↔ (𝜑 ∧ ∃𝑥 𝑥 = 𝐵)) |
| 5 | 4 | rexbii 3079 | . 2 ⊢ (∃𝑦 ∈ 𝐴 𝜑 ↔ ∃𝑦 ∈ 𝐴 (𝜑 ∧ ∃𝑥 𝑥 = 𝐵)) |
| 6 | 1, 5 | bitr4i 278 | 1 ⊢ (∃𝑥∃𝑦 ∈ 𝐴 (𝜑 ∧ 𝑥 = 𝐵) ↔ ∃𝑦 ∈ 𝐴 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1541 ∃wex 1780 ∈ wcel 2111 ∃wrex 3056 Vcvv 3436 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-11 2160 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-clel 2806 df-rex 3057 |
| This theorem is referenced by: islshpat 39055 |
| Copyright terms: Public domain | W3C validator |