MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vtoclgft Structured version   Visualization version   GIF version

Theorem vtoclgft 3552
Description: Closed theorem form of vtoclgf 3569. The reverse implication is proven in ceqsal1t 3512. See ceqsalt 3513 for a version with 𝑥 and 𝐴 disjoint. (Contributed by NM, 17-Feb-2013.) (Revised by Mario Carneiro, 12-Oct-2016.) (Proof shortened by JJ, 11-Aug-2021.) Avoid ax-13 2375. (Revised by GG, 6-Oct-2023.)
Assertion
Ref Expression
vtoclgft (((𝑥𝐴 ∧ Ⅎ𝑥𝜓) ∧ (∀𝑥(𝑥 = 𝐴 → (𝜑𝜓)) ∧ ∀𝑥𝜑) ∧ 𝐴𝑉) → 𝜓)

Proof of Theorem vtoclgft
StepHypRef Expression
1 biimp 215 . . . . . . 7 ((𝜑𝜓) → (𝜑𝜓))
21imim2i 16 . . . . . 6 ((𝑥 = 𝐴 → (𝜑𝜓)) → (𝑥 = 𝐴 → (𝜑𝜓)))
32alimi 1808 . . . . 5 (∀𝑥(𝑥 = 𝐴 → (𝜑𝜓)) → ∀𝑥(𝑥 = 𝐴 → (𝜑𝜓)))
4 spcimgft 3546 . . . . 5 (((𝑥𝐴 ∧ Ⅎ𝑥𝜓) ∧ ∀𝑥(𝑥 = 𝐴 → (𝜑𝜓))) → (𝐴𝑉 → (∀𝑥𝜑𝜓)))
53, 4sylan2 593 . . . 4 (((𝑥𝐴 ∧ Ⅎ𝑥𝜓) ∧ ∀𝑥(𝑥 = 𝐴 → (𝜑𝜓))) → (𝐴𝑉 → (∀𝑥𝜑𝜓)))
65com23 86 . . 3 (((𝑥𝐴 ∧ Ⅎ𝑥𝜓) ∧ ∀𝑥(𝑥 = 𝐴 → (𝜑𝜓))) → (∀𝑥𝜑 → (𝐴𝑉𝜓)))
76impr 454 . 2 (((𝑥𝐴 ∧ Ⅎ𝑥𝜓) ∧ (∀𝑥(𝑥 = 𝐴 → (𝜑𝜓)) ∧ ∀𝑥𝜑)) → (𝐴𝑉𝜓))
873impia 1116 1 (((𝑥𝐴 ∧ Ⅎ𝑥𝜓) ∧ (∀𝑥(𝑥 = 𝐴 → (𝜑𝜓)) ∧ ∀𝑥𝜑) ∧ 𝐴𝑉) → 𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086  wal 1535   = wceq 1537  wnf 1780  wcel 2106  wnfc 2888
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-ex 1777  df-nf 1781  df-cleq 2727  df-clel 2814  df-nfc 2890
This theorem is referenced by:  vtocldf  3560  bj-vtoclgfALT  37042
  Copyright terms: Public domain W3C validator