![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > vtoclgft | Structured version Visualization version GIF version |
Description: Closed theorem form of vtoclgf 3556. The reverse implication is proven in ceqsal1t 3503. See ceqsalt 3504 for a version with 𝑥 and 𝐴 disjoint. (Contributed by NM, 17-Feb-2013.) (Revised by Mario Carneiro, 12-Oct-2016.) (Proof shortened by JJ, 11-Aug-2021.) Avoid ax-13 2369. (Revised by Gino Giotto, 6-Oct-2023.) |
Ref | Expression |
---|---|
vtoclgft | ⊢ (((Ⅎ𝑥𝐴 ∧ Ⅎ𝑥𝜓) ∧ (∀𝑥(𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) ∧ ∀𝑥𝜑) ∧ 𝐴 ∈ 𝑉) → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 3491 | . . . . 5 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ V) | |
2 | issetft 3486 | . . . . 5 ⊢ (Ⅎ𝑥𝐴 → (𝐴 ∈ V ↔ ∃𝑥 𝑥 = 𝐴)) | |
3 | 1, 2 | imbitrid 243 | . . . 4 ⊢ (Ⅎ𝑥𝐴 → (𝐴 ∈ 𝑉 → ∃𝑥 𝑥 = 𝐴)) |
4 | 3 | ad2antrr 722 | . . 3 ⊢ (((Ⅎ𝑥𝐴 ∧ Ⅎ𝑥𝜓) ∧ (∀𝑥(𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) ∧ ∀𝑥𝜑)) → (𝐴 ∈ 𝑉 → ∃𝑥 𝑥 = 𝐴)) |
5 | 4 | 3impia 1115 | . 2 ⊢ (((Ⅎ𝑥𝐴 ∧ Ⅎ𝑥𝜓) ∧ (∀𝑥(𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) ∧ ∀𝑥𝜑) ∧ 𝐴 ∈ 𝑉) → ∃𝑥 𝑥 = 𝐴) |
6 | biimp 214 | . . . . . . . . 9 ⊢ ((𝜑 ↔ 𝜓) → (𝜑 → 𝜓)) | |
7 | 6 | imim2i 16 | . . . . . . . 8 ⊢ ((𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) → (𝑥 = 𝐴 → (𝜑 → 𝜓))) |
8 | 7 | com23 86 | . . . . . . 7 ⊢ ((𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) → (𝜑 → (𝑥 = 𝐴 → 𝜓))) |
9 | 8 | imp 405 | . . . . . 6 ⊢ (((𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) ∧ 𝜑) → (𝑥 = 𝐴 → 𝜓)) |
10 | 9 | alanimi 1816 | . . . . 5 ⊢ ((∀𝑥(𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) ∧ ∀𝑥𝜑) → ∀𝑥(𝑥 = 𝐴 → 𝜓)) |
11 | 19.23t 2201 | . . . . . 6 ⊢ (Ⅎ𝑥𝜓 → (∀𝑥(𝑥 = 𝐴 → 𝜓) ↔ (∃𝑥 𝑥 = 𝐴 → 𝜓))) | |
12 | 11 | adantl 480 | . . . . 5 ⊢ ((Ⅎ𝑥𝐴 ∧ Ⅎ𝑥𝜓) → (∀𝑥(𝑥 = 𝐴 → 𝜓) ↔ (∃𝑥 𝑥 = 𝐴 → 𝜓))) |
13 | 10, 12 | imbitrid 243 | . . . 4 ⊢ ((Ⅎ𝑥𝐴 ∧ Ⅎ𝑥𝜓) → ((∀𝑥(𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) ∧ ∀𝑥𝜑) → (∃𝑥 𝑥 = 𝐴 → 𝜓))) |
14 | 13 | imp 405 | . . 3 ⊢ (((Ⅎ𝑥𝐴 ∧ Ⅎ𝑥𝜓) ∧ (∀𝑥(𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) ∧ ∀𝑥𝜑)) → (∃𝑥 𝑥 = 𝐴 → 𝜓)) |
15 | 14 | 3adant3 1130 | . 2 ⊢ (((Ⅎ𝑥𝐴 ∧ Ⅎ𝑥𝜓) ∧ (∀𝑥(𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) ∧ ∀𝑥𝜑) ∧ 𝐴 ∈ 𝑉) → (∃𝑥 𝑥 = 𝐴 → 𝜓)) |
16 | 5, 15 | mpd 15 | 1 ⊢ (((Ⅎ𝑥𝐴 ∧ Ⅎ𝑥𝜓) ∧ (∀𝑥(𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) ∧ ∀𝑥𝜑) ∧ 𝐴 ∈ 𝑉) → 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 394 ∧ w3a 1085 ∀wal 1537 = wceq 1539 ∃wex 1779 Ⅎwnf 1783 ∈ wcel 2104 Ⅎwnfc 2881 Vcvv 3472 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3an 1087 df-tru 1542 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-v 3474 |
This theorem is referenced by: vtocldf 3545 bj-vtoclgfALT 36243 |
Copyright terms: Public domain | W3C validator |