MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ceqsalt Structured version   Visualization version   GIF version

Theorem ceqsalt 3452
Description: Closed theorem version of ceqsalg 3454. (Contributed by NM, 28-Feb-2013.) (Revised by Mario Carneiro, 10-Oct-2016.)
Assertion
Ref Expression
ceqsalt ((Ⅎ𝑥𝜓 ∧ ∀𝑥(𝑥 = 𝐴 → (𝜑𝜓)) ∧ 𝐴𝑉) → (∀𝑥(𝑥 = 𝐴𝜑) ↔ 𝜓))
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑥)   𝑉(𝑥)

Proof of Theorem ceqsalt
StepHypRef Expression
1 elisset 2820 . . . 4 (𝐴𝑉 → ∃𝑥 𝑥 = 𝐴)
213ad2ant3 1133 . . 3 ((Ⅎ𝑥𝜓 ∧ ∀𝑥(𝑥 = 𝐴 → (𝜑𝜓)) ∧ 𝐴𝑉) → ∃𝑥 𝑥 = 𝐴)
3 biimp 214 . . . . . . 7 ((𝜑𝜓) → (𝜑𝜓))
43imim3i 64 . . . . . 6 ((𝑥 = 𝐴 → (𝜑𝜓)) → ((𝑥 = 𝐴𝜑) → (𝑥 = 𝐴𝜓)))
54al2imi 1819 . . . . 5 (∀𝑥(𝑥 = 𝐴 → (𝜑𝜓)) → (∀𝑥(𝑥 = 𝐴𝜑) → ∀𝑥(𝑥 = 𝐴𝜓)))
653ad2ant2 1132 . . . 4 ((Ⅎ𝑥𝜓 ∧ ∀𝑥(𝑥 = 𝐴 → (𝜑𝜓)) ∧ 𝐴𝑉) → (∀𝑥(𝑥 = 𝐴𝜑) → ∀𝑥(𝑥 = 𝐴𝜓)))
7 19.23t 2206 . . . . 5 (Ⅎ𝑥𝜓 → (∀𝑥(𝑥 = 𝐴𝜓) ↔ (∃𝑥 𝑥 = 𝐴𝜓)))
873ad2ant1 1131 . . . 4 ((Ⅎ𝑥𝜓 ∧ ∀𝑥(𝑥 = 𝐴 → (𝜑𝜓)) ∧ 𝐴𝑉) → (∀𝑥(𝑥 = 𝐴𝜓) ↔ (∃𝑥 𝑥 = 𝐴𝜓)))
96, 8sylibd 238 . . 3 ((Ⅎ𝑥𝜓 ∧ ∀𝑥(𝑥 = 𝐴 → (𝜑𝜓)) ∧ 𝐴𝑉) → (∀𝑥(𝑥 = 𝐴𝜑) → (∃𝑥 𝑥 = 𝐴𝜓)))
102, 9mpid 44 . 2 ((Ⅎ𝑥𝜓 ∧ ∀𝑥(𝑥 = 𝐴 → (𝜑𝜓)) ∧ 𝐴𝑉) → (∀𝑥(𝑥 = 𝐴𝜑) → 𝜓))
11 biimpr 219 . . . . . . 7 ((𝜑𝜓) → (𝜓𝜑))
1211imim2i 16 . . . . . 6 ((𝑥 = 𝐴 → (𝜑𝜓)) → (𝑥 = 𝐴 → (𝜓𝜑)))
1312com23 86 . . . . 5 ((𝑥 = 𝐴 → (𝜑𝜓)) → (𝜓 → (𝑥 = 𝐴𝜑)))
1413alimi 1815 . . . 4 (∀𝑥(𝑥 = 𝐴 → (𝜑𝜓)) → ∀𝑥(𝜓 → (𝑥 = 𝐴𝜑)))
15143ad2ant2 1132 . . 3 ((Ⅎ𝑥𝜓 ∧ ∀𝑥(𝑥 = 𝐴 → (𝜑𝜓)) ∧ 𝐴𝑉) → ∀𝑥(𝜓 → (𝑥 = 𝐴𝜑)))
16 19.21t 2202 . . . 4 (Ⅎ𝑥𝜓 → (∀𝑥(𝜓 → (𝑥 = 𝐴𝜑)) ↔ (𝜓 → ∀𝑥(𝑥 = 𝐴𝜑))))
17163ad2ant1 1131 . . 3 ((Ⅎ𝑥𝜓 ∧ ∀𝑥(𝑥 = 𝐴 → (𝜑𝜓)) ∧ 𝐴𝑉) → (∀𝑥(𝜓 → (𝑥 = 𝐴𝜑)) ↔ (𝜓 → ∀𝑥(𝑥 = 𝐴𝜑))))
1815, 17mpbid 231 . 2 ((Ⅎ𝑥𝜓 ∧ ∀𝑥(𝑥 = 𝐴 → (𝜑𝜓)) ∧ 𝐴𝑉) → (𝜓 → ∀𝑥(𝑥 = 𝐴𝜑)))
1910, 18impbid 211 1 ((Ⅎ𝑥𝜓 ∧ ∀𝑥(𝑥 = 𝐴 → (𝜑𝜓)) ∧ 𝐴𝑉) → (∀𝑥(𝑥 = 𝐴𝜑) ↔ 𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  w3a 1085  wal 1537   = wceq 1539  wex 1783  wnf 1787  wcel 2108
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-12 2173
This theorem depends on definitions:  df-bi 206  df-an 396  df-3an 1087  df-tru 1542  df-ex 1784  df-nf 1788  df-sb 2069  df-clab 2716  df-clel 2817
This theorem is referenced by:  ceqsralt  3453  ceqsalg  3454
  Copyright terms: Public domain W3C validator