Proof of Theorem ceqsalt
Step | Hyp | Ref
| Expression |
1 | | biimp 215 |
. . . . . . 7
⊢ ((𝜑 ↔ 𝜓) → (𝜑 → 𝜓)) |
2 | 1 | imim3i 64 |
. . . . . 6
⊢ ((𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) → ((𝑥 = 𝐴 → 𝜑) → (𝑥 = 𝐴 → 𝜓))) |
3 | 2 | al2imi 1813 |
. . . . 5
⊢
(∀𝑥(𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) → (∀𝑥(𝑥 = 𝐴 → 𝜑) → ∀𝑥(𝑥 = 𝐴 → 𝜓))) |
4 | | elisset 2826 |
. . . . . 6
⊢ (𝐴 ∈ 𝑉 → ∃𝑥 𝑥 = 𝐴) |
5 | | 19.23t 2211 |
. . . . . . 7
⊢
(Ⅎ𝑥𝜓 → (∀𝑥(𝑥 = 𝐴 → 𝜓) ↔ (∃𝑥 𝑥 = 𝐴 → 𝜓))) |
6 | 5 | biimpd 229 |
. . . . . 6
⊢
(Ⅎ𝑥𝜓 → (∀𝑥(𝑥 = 𝐴 → 𝜓) → (∃𝑥 𝑥 = 𝐴 → 𝜓))) |
7 | 4, 6 | syl7 74 |
. . . . 5
⊢
(Ⅎ𝑥𝜓 → (∀𝑥(𝑥 = 𝐴 → 𝜓) → (𝐴 ∈ 𝑉 → 𝜓))) |
8 | 3, 7 | sylan9r 508 |
. . . 4
⊢
((Ⅎ𝑥𝜓 ∧ ∀𝑥(𝑥 = 𝐴 → (𝜑 ↔ 𝜓))) → (∀𝑥(𝑥 = 𝐴 → 𝜑) → (𝐴 ∈ 𝑉 → 𝜓))) |
9 | 8 | com23 86 |
. . 3
⊢
((Ⅎ𝑥𝜓 ∧ ∀𝑥(𝑥 = 𝐴 → (𝜑 ↔ 𝜓))) → (𝐴 ∈ 𝑉 → (∀𝑥(𝑥 = 𝐴 → 𝜑) → 𝜓))) |
10 | 9 | 3impia 1117 |
. 2
⊢
((Ⅎ𝑥𝜓 ∧ ∀𝑥(𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) ∧ 𝐴 ∈ 𝑉) → (∀𝑥(𝑥 = 𝐴 → 𝜑) → 𝜓)) |
11 | | ceqsal1t 3522 |
. . 3
⊢
((Ⅎ𝑥𝜓 ∧ ∀𝑥(𝑥 = 𝐴 → (𝜑 ↔ 𝜓))) → (𝜓 → ∀𝑥(𝑥 = 𝐴 → 𝜑))) |
12 | 11 | 3adant3 1132 |
. 2
⊢
((Ⅎ𝑥𝜓 ∧ ∀𝑥(𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) ∧ 𝐴 ∈ 𝑉) → (𝜓 → ∀𝑥(𝑥 = 𝐴 → 𝜑))) |
13 | 10, 12 | impbid 212 |
1
⊢
((Ⅎ𝑥𝜓 ∧ ∀𝑥(𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) ∧ 𝐴 ∈ 𝑉) → (∀𝑥(𝑥 = 𝐴 → 𝜑) ↔ 𝜓)) |