Proof of Theorem ceqsalt
| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | biimp 215 | . . . . . . 7
⊢ ((𝜑 ↔ 𝜓) → (𝜑 → 𝜓)) | 
| 2 | 1 | imim3i 64 | . . . . . 6
⊢ ((𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) → ((𝑥 = 𝐴 → 𝜑) → (𝑥 = 𝐴 → 𝜓))) | 
| 3 | 2 | al2imi 1815 | . . . . 5
⊢
(∀𝑥(𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) → (∀𝑥(𝑥 = 𝐴 → 𝜑) → ∀𝑥(𝑥 = 𝐴 → 𝜓))) | 
| 4 |  | elisset 2823 | . . . . . 6
⊢ (𝐴 ∈ 𝑉 → ∃𝑥 𝑥 = 𝐴) | 
| 5 |  | 19.23t 2210 | . . . . . . 7
⊢
(Ⅎ𝑥𝜓 → (∀𝑥(𝑥 = 𝐴 → 𝜓) ↔ (∃𝑥 𝑥 = 𝐴 → 𝜓))) | 
| 6 | 5 | biimpd 229 | . . . . . 6
⊢
(Ⅎ𝑥𝜓 → (∀𝑥(𝑥 = 𝐴 → 𝜓) → (∃𝑥 𝑥 = 𝐴 → 𝜓))) | 
| 7 | 4, 6 | syl7 74 | . . . . 5
⊢
(Ⅎ𝑥𝜓 → (∀𝑥(𝑥 = 𝐴 → 𝜓) → (𝐴 ∈ 𝑉 → 𝜓))) | 
| 8 | 3, 7 | sylan9r 508 | . . . 4
⊢
((Ⅎ𝑥𝜓 ∧ ∀𝑥(𝑥 = 𝐴 → (𝜑 ↔ 𝜓))) → (∀𝑥(𝑥 = 𝐴 → 𝜑) → (𝐴 ∈ 𝑉 → 𝜓))) | 
| 9 | 8 | com23 86 | . . 3
⊢
((Ⅎ𝑥𝜓 ∧ ∀𝑥(𝑥 = 𝐴 → (𝜑 ↔ 𝜓))) → (𝐴 ∈ 𝑉 → (∀𝑥(𝑥 = 𝐴 → 𝜑) → 𝜓))) | 
| 10 | 9 | 3impia 1118 | . 2
⊢
((Ⅎ𝑥𝜓 ∧ ∀𝑥(𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) ∧ 𝐴 ∈ 𝑉) → (∀𝑥(𝑥 = 𝐴 → 𝜑) → 𝜓)) | 
| 11 |  | ceqsal1t 3514 | . . 3
⊢
((Ⅎ𝑥𝜓 ∧ ∀𝑥(𝑥 = 𝐴 → (𝜑 ↔ 𝜓))) → (𝜓 → ∀𝑥(𝑥 = 𝐴 → 𝜑))) | 
| 12 | 11 | 3adant3 1133 | . 2
⊢
((Ⅎ𝑥𝜓 ∧ ∀𝑥(𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) ∧ 𝐴 ∈ 𝑉) → (𝜓 → ∀𝑥(𝑥 = 𝐴 → 𝜑))) | 
| 13 | 10, 12 | impbid 212 | 1
⊢
((Ⅎ𝑥𝜓 ∧ ∀𝑥(𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) ∧ 𝐴 ∈ 𝑉) → (∀𝑥(𝑥 = 𝐴 → 𝜑) ↔ 𝜓)) |