![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ceqsalALT | Structured version Visualization version GIF version |
Description: A representation of explicit substitution of a class for a variable, inferred from an implicit substitution hypothesis. Shorter proof uses df-clab 2718. (Contributed by NM, 18-Aug-1993.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
ceqsal.1 | ⊢ Ⅎ𝑥𝜓 |
ceqsal.2 | ⊢ 𝐴 ∈ V |
ceqsal.3 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
ceqsalALT | ⊢ (∀𝑥(𝑥 = 𝐴 → 𝜑) ↔ 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ceqsal.2 | . 2 ⊢ 𝐴 ∈ V | |
2 | ceqsal.1 | . . 3 ⊢ Ⅎ𝑥𝜓 | |
3 | ceqsal.3 | . . 3 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
4 | 2, 3 | ceqsalg 3525 | . 2 ⊢ (𝐴 ∈ V → (∀𝑥(𝑥 = 𝐴 → 𝜑) ↔ 𝜓)) |
5 | 1, 4 | ax-mp 5 | 1 ⊢ (∀𝑥(𝑥 = 𝐴 → 𝜑) ↔ 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∀wal 1535 = wceq 1537 Ⅎwnf 1781 ∈ wcel 2108 Vcvv 3488 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-12 2178 |
This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1089 df-tru 1540 df-ex 1778 df-nf 1782 df-sb 2065 df-clab 2718 df-clel 2819 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |