| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ceqsalALT | Structured version Visualization version GIF version | ||
| Description: A representation of explicit substitution of a class for a variable, inferred from an implicit substitution hypothesis. Shorter proof uses df-clab 2715. (Contributed by NM, 18-Aug-1993.) (Proof modification is discouraged.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| ceqsal.1 | ⊢ Ⅎ𝑥𝜓 |
| ceqsal.2 | ⊢ 𝐴 ∈ V |
| ceqsal.3 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| ceqsalALT | ⊢ (∀𝑥(𝑥 = 𝐴 → 𝜑) ↔ 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ceqsal.2 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | ceqsal.1 | . . 3 ⊢ Ⅎ𝑥𝜓 | |
| 3 | ceqsal.3 | . . 3 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
| 4 | 2, 3 | ceqsalg 3501 | . 2 ⊢ (𝐴 ∈ V → (∀𝑥(𝑥 = 𝐴 → 𝜑) ↔ 𝜓)) |
| 5 | 1, 4 | ax-mp 5 | 1 ⊢ (∀𝑥(𝑥 = 𝐴 → 𝜑) ↔ 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∀wal 1538 = wceq 1540 Ⅎwnf 1783 ∈ wcel 2109 Vcvv 3464 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-12 2178 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 df-tru 1543 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2715 df-clel 2810 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |