Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ceqsrexv2TEMP Structured version   Visualization version   GIF version

Theorem ceqsrexv2TEMP 36530
Description: Alternate elimitation of a restricted existential quantifier, using implicit substitution. (Contributed by Scott Fenton, 5-Sep-2017.)
Hypothesis
Ref Expression
ceqsrexv2TEMP.1 (𝑥 = 𝐴 → (𝜑𝜓))
Assertion
Ref Expression
ceqsrexv2TEMP (∃𝑥𝐵 (𝑥 = 𝐴𝜑) ↔ (𝐴𝐵𝜓))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝜓,𝑥
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem ceqsrexv2TEMP
StepHypRef Expression
1 ceqsrexv2TEMP.1 . 2 (𝑥 = 𝐴 → (𝜑𝜓))
21ceqsrexbv 3591 1 (∃𝑥𝐵 (𝑥 = 𝐴𝜑) ↔ (𝐴𝐵𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397   = wceq 1539  wcel 2104  wrex 3070
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-ext 2707
This theorem depends on definitions:  df-bi 206  df-an 398  df-tru 1542  df-ex 1780  df-sb 2066  df-clab 2714  df-cleq 2728  df-clel 2814  df-rex 3071
This theorem is referenced by:  ceqsralv2TEMP  36531
  Copyright terms: Public domain W3C validator