Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ceqsralv2TEMP Structured version   Visualization version   GIF version

Theorem ceqsralv2TEMP 36531
Description: Alternate elimination of a restricted universal quantifier, using implicit substitution. (Temporary: as soon as this Mathbox only PR is accepted, I'll open a PR to place this to the main. PM) (Contributed by Scott Fenton, 7-Dec-2020.)
Hypothesis
Ref Expression
ceqsralv2TEMP.1 (𝑥 = 𝐴 → (𝜑𝜓))
Assertion
Ref Expression
ceqsralv2TEMP (∀𝑥𝐵 (𝑥 = 𝐴𝜑) ↔ (𝐴𝐵𝜓))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝜓,𝑥
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem ceqsralv2TEMP
StepHypRef Expression
1 ceqsralv2TEMP.1 . . . . 5 (𝑥 = 𝐴 → (𝜑𝜓))
21notbid 318 . . . 4 (𝑥 = 𝐴 → (¬ 𝜑 ↔ ¬ 𝜓))
32ceqsrexv2TEMP 36530 . . 3 (∃𝑥𝐵 (𝑥 = 𝐴 ∧ ¬ 𝜑) ↔ (𝐴𝐵 ∧ ¬ 𝜓))
4 rexanali 3101 . . 3 (∃𝑥𝐵 (𝑥 = 𝐴 ∧ ¬ 𝜑) ↔ ¬ ∀𝑥𝐵 (𝑥 = 𝐴𝜑))
5 annim 405 . . 3 ((𝐴𝐵 ∧ ¬ 𝜓) ↔ ¬ (𝐴𝐵𝜓))
63, 4, 53bitr3i 301 . 2 (¬ ∀𝑥𝐵 (𝑥 = 𝐴𝜑) ↔ ¬ (𝐴𝐵𝜓))
76con4bii 321 1 (∀𝑥𝐵 (𝑥 = 𝐴𝜑) ↔ (𝐴𝐵𝜓))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 397   = wceq 1539  wcel 2104  wral 3061  wrex 3070
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-ext 2707
This theorem depends on definitions:  df-bi 206  df-an 398  df-tru 1542  df-ex 1780  df-sb 2066  df-clab 2714  df-cleq 2728  df-clel 2814  df-ral 3062  df-rex 3071
This theorem is referenced by:  ref5  36532
  Copyright terms: Public domain W3C validator