Mathbox for Peter Mazsa < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  idinxpss Structured version   Visualization version   GIF version

Theorem idinxpss 35123
 Description: Two ways to say that an intersection of the identity relation with a Cartesian product is a subclass. (Contributed by Peter Mazsa, 16-Jul-2019.)
Assertion
Ref Expression
idinxpss (( I ∩ (𝐴 × 𝐵)) ⊆ 𝑅 ↔ ∀𝑥𝐴𝑦𝐵 (𝑥 = 𝑦𝑥𝑅𝑦))
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝐵,𝑦   𝑥,𝑅,𝑦

Proof of Theorem idinxpss
StepHypRef Expression
1 inxpss 35122 . 2 (( I ∩ (𝐴 × 𝐵)) ⊆ 𝑅 ↔ ∀𝑥𝐴𝑦𝐵 (𝑥 I 𝑦𝑥𝑅𝑦))
2 ideqg 5615 . . . . 5 (𝑦 ∈ V → (𝑥 I 𝑦𝑥 = 𝑦))
32elv 3445 . . . 4 (𝑥 I 𝑦𝑥 = 𝑦)
43imbi1i 351 . . 3 ((𝑥 I 𝑦𝑥𝑅𝑦) ↔ (𝑥 = 𝑦𝑥𝑅𝑦))
542ralbii 3135 . 2 (∀𝑥𝐴𝑦𝐵 (𝑥 I 𝑦𝑥𝑅𝑦) ↔ ∀𝑥𝐴𝑦𝐵 (𝑥 = 𝑦𝑥𝑅𝑦))
61, 5bitri 276 1 (( I ∩ (𝐴 × 𝐵)) ⊆ 𝑅 ↔ ∀𝑥𝐴𝑦𝐵 (𝑥 = 𝑦𝑥𝑅𝑦))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 207  ∀wral 3107  Vcvv 3440   ∩ cin 3864   ⊆ wss 3865   class class class wbr 4968   I cid 5354   × cxp 5448 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1781  ax-4 1795  ax-5 1892  ax-6 1951  ax-7 1996  ax-8 2085  ax-9 2093  ax-10 2114  ax-11 2128  ax-12 2143  ax-13 2346  ax-ext 2771  ax-sep 5101  ax-nul 5108  ax-pr 5228 This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3an 1082  df-tru 1528  df-ex 1766  df-nf 1770  df-sb 2045  df-mo 2578  df-eu 2614  df-clab 2778  df-cleq 2790  df-clel 2865  df-nfc 2937  df-ral 3112  df-rex 3113  df-rab 3116  df-v 3442  df-dif 3868  df-un 3870  df-in 3872  df-ss 3880  df-nul 4218  df-if 4388  df-sn 4479  df-pr 4481  df-op 4485  df-br 4969  df-opab 5031  df-id 5355  df-xp 5456  df-rel 5457 This theorem is referenced by:  refrelcoss2  35256  dfrefrels3  35306  dfrefrel3  35308  symrefref3  35352
 Copyright terms: Public domain W3C validator