| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > idinxpss | Structured version Visualization version GIF version | ||
| Description: Two ways to say that an intersection of the identity relation with a Cartesian product is a subclass. (Contributed by Peter Mazsa, 16-Jul-2019.) |
| Ref | Expression |
|---|---|
| idinxpss | ⊢ (( I ∩ (𝐴 × 𝐵)) ⊆ 𝑅 ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝑥 = 𝑦 → 𝑥𝑅𝑦)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | inxpss 38334 | . 2 ⊢ (( I ∩ (𝐴 × 𝐵)) ⊆ 𝑅 ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝑥 I 𝑦 → 𝑥𝑅𝑦)) | |
| 2 | ideqg 5836 | . . . . 5 ⊢ (𝑦 ∈ V → (𝑥 I 𝑦 ↔ 𝑥 = 𝑦)) | |
| 3 | 2 | elv 3469 | . . . 4 ⊢ (𝑥 I 𝑦 ↔ 𝑥 = 𝑦) |
| 4 | 3 | imbi1i 349 | . . 3 ⊢ ((𝑥 I 𝑦 → 𝑥𝑅𝑦) ↔ (𝑥 = 𝑦 → 𝑥𝑅𝑦)) |
| 5 | 4 | 2ralbii 3116 | . 2 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝑥 I 𝑦 → 𝑥𝑅𝑦) ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝑥 = 𝑦 → 𝑥𝑅𝑦)) |
| 6 | 1, 5 | bitri 275 | 1 ⊢ (( I ∩ (𝐴 × 𝐵)) ⊆ 𝑅 ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝑥 = 𝑦 → 𝑥𝑅𝑦)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∀wral 3052 Vcvv 3464 ∩ cin 3930 ⊆ wss 3931 class class class wbr 5124 I cid 5552 × cxp 5657 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pr 5407 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-br 5125 df-opab 5187 df-id 5553 df-xp 5665 df-rel 5666 |
| This theorem is referenced by: ref5 38336 refrelcoss2 38487 dfrefrels3 38537 dfrefrel3 38539 symrefref3 38587 |
| Copyright terms: Public domain | W3C validator |