| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ceqsrexbv | Structured version Visualization version GIF version | ||
| Description: Elimination of a restricted existential quantifier, using implicit substitution. (Contributed by Mario Carneiro, 14-Mar-2014.) |
| Ref | Expression |
|---|---|
| ceqsrexv.1 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| ceqsrexbv | ⊢ (∃𝑥 ∈ 𝐵 (𝑥 = 𝐴 ∧ 𝜑) ↔ (𝐴 ∈ 𝐵 ∧ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | r19.42v 3191 | . 2 ⊢ (∃𝑥 ∈ 𝐵 (𝐴 ∈ 𝐵 ∧ (𝑥 = 𝐴 ∧ 𝜑)) ↔ (𝐴 ∈ 𝐵 ∧ ∃𝑥 ∈ 𝐵 (𝑥 = 𝐴 ∧ 𝜑))) | |
| 2 | eleq1 2829 | . . . . . . 7 ⊢ (𝑥 = 𝐴 → (𝑥 ∈ 𝐵 ↔ 𝐴 ∈ 𝐵)) | |
| 3 | 2 | adantr 480 | . . . . . 6 ⊢ ((𝑥 = 𝐴 ∧ 𝜑) → (𝑥 ∈ 𝐵 ↔ 𝐴 ∈ 𝐵)) |
| 4 | 3 | pm5.32ri 575 | . . . . 5 ⊢ ((𝑥 ∈ 𝐵 ∧ (𝑥 = 𝐴 ∧ 𝜑)) ↔ (𝐴 ∈ 𝐵 ∧ (𝑥 = 𝐴 ∧ 𝜑))) |
| 5 | 4 | bicomi 224 | . . . 4 ⊢ ((𝐴 ∈ 𝐵 ∧ (𝑥 = 𝐴 ∧ 𝜑)) ↔ (𝑥 ∈ 𝐵 ∧ (𝑥 = 𝐴 ∧ 𝜑))) |
| 6 | 5 | baib 535 | . . 3 ⊢ (𝑥 ∈ 𝐵 → ((𝐴 ∈ 𝐵 ∧ (𝑥 = 𝐴 ∧ 𝜑)) ↔ (𝑥 = 𝐴 ∧ 𝜑))) |
| 7 | 6 | rexbiia 3092 | . 2 ⊢ (∃𝑥 ∈ 𝐵 (𝐴 ∈ 𝐵 ∧ (𝑥 = 𝐴 ∧ 𝜑)) ↔ ∃𝑥 ∈ 𝐵 (𝑥 = 𝐴 ∧ 𝜑)) |
| 8 | ceqsrexv.1 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
| 9 | 8 | ceqsrexv 3655 | . . 3 ⊢ (𝐴 ∈ 𝐵 → (∃𝑥 ∈ 𝐵 (𝑥 = 𝐴 ∧ 𝜑) ↔ 𝜓)) |
| 10 | 9 | pm5.32i 574 | . 2 ⊢ ((𝐴 ∈ 𝐵 ∧ ∃𝑥 ∈ 𝐵 (𝑥 = 𝐴 ∧ 𝜑)) ↔ (𝐴 ∈ 𝐵 ∧ 𝜓)) |
| 11 | 1, 7, 10 | 3bitr3i 301 | 1 ⊢ (∃𝑥 ∈ 𝐵 (𝑥 = 𝐴 ∧ 𝜑) ↔ (𝐴 ∈ 𝐵 ∧ 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ∃wrex 3070 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2065 df-clab 2715 df-cleq 2729 df-clel 2816 df-rex 3071 |
| This theorem is referenced by: ceqsralbv 3657 marypha2lem2 9476 psdmul 22170 txkgen 23660 eq0rabdioph 42787 |
| Copyright terms: Public domain | W3C validator |