MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ceqsrexbv Structured version   Visualization version   GIF version

Theorem ceqsrexbv 3526
Description: Elimination of a restricted existential quantifier, using implicit substitution. (Contributed by Mario Carneiro, 14-Mar-2014.)
Hypothesis
Ref Expression
ceqsrexv.1 (𝑥 = 𝐴 → (𝜑𝜓))
Assertion
Ref Expression
ceqsrexbv (∃𝑥𝐵 (𝑥 = 𝐴𝜑) ↔ (𝐴𝐵𝜓))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝜓,𝑥
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem ceqsrexbv
StepHypRef Expression
1 r19.42v 3273 . 2 (∃𝑥𝐵 (𝐴𝐵 ∧ (𝑥 = 𝐴𝜑)) ↔ (𝐴𝐵 ∧ ∃𝑥𝐵 (𝑥 = 𝐴𝜑)))
2 eleq1 2866 . . . . . . 7 (𝑥 = 𝐴 → (𝑥𝐵𝐴𝐵))
32adantr 473 . . . . . 6 ((𝑥 = 𝐴𝜑) → (𝑥𝐵𝐴𝐵))
43pm5.32ri 572 . . . . 5 ((𝑥𝐵 ∧ (𝑥 = 𝐴𝜑)) ↔ (𝐴𝐵 ∧ (𝑥 = 𝐴𝜑)))
54bicomi 216 . . . 4 ((𝐴𝐵 ∧ (𝑥 = 𝐴𝜑)) ↔ (𝑥𝐵 ∧ (𝑥 = 𝐴𝜑)))
65baib 532 . . 3 (𝑥𝐵 → ((𝐴𝐵 ∧ (𝑥 = 𝐴𝜑)) ↔ (𝑥 = 𝐴𝜑)))
76rexbiia 3221 . 2 (∃𝑥𝐵 (𝐴𝐵 ∧ (𝑥 = 𝐴𝜑)) ↔ ∃𝑥𝐵 (𝑥 = 𝐴𝜑))
8 ceqsrexv.1 . . . 4 (𝑥 = 𝐴 → (𝜑𝜓))
98ceqsrexv 3525 . . 3 (𝐴𝐵 → (∃𝑥𝐵 (𝑥 = 𝐴𝜑) ↔ 𝜓))
109pm5.32i 571 . 2 ((𝐴𝐵 ∧ ∃𝑥𝐵 (𝑥 = 𝐴𝜑)) ↔ (𝐴𝐵𝜓))
111, 7, 103bitr3i 293 1 (∃𝑥𝐵 (𝑥 = 𝐴𝜑) ↔ (𝐴𝐵𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 385   = wceq 1653  wcel 2157  wrex 3090
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1891  ax-4 1905  ax-5 2006  ax-6 2072  ax-7 2107  ax-9 2166  ax-10 2185  ax-12 2213  ax-ext 2777
This theorem depends on definitions:  df-bi 199  df-an 386  df-or 875  df-tru 1657  df-ex 1876  df-nf 1880  df-sb 2065  df-clab 2786  df-cleq 2792  df-clel 2795  df-rex 3095  df-v 3387
This theorem is referenced by:  marypha2lem2  8584  txkgen  21784  ceqsrexv2  32120  eq0rabdioph  38122
  Copyright terms: Public domain W3C validator