![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ceqsrexbv | Structured version Visualization version GIF version |
Description: Elimination of a restricted existential quantifier, using implicit substitution. (Contributed by Mario Carneiro, 14-Mar-2014.) |
Ref | Expression |
---|---|
ceqsrexv.1 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
ceqsrexbv | ⊢ (∃𝑥 ∈ 𝐵 (𝑥 = 𝐴 ∧ 𝜑) ↔ (𝐴 ∈ 𝐵 ∧ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | r19.42v 3184 | . 2 ⊢ (∃𝑥 ∈ 𝐵 (𝐴 ∈ 𝐵 ∧ (𝑥 = 𝐴 ∧ 𝜑)) ↔ (𝐴 ∈ 𝐵 ∧ ∃𝑥 ∈ 𝐵 (𝑥 = 𝐴 ∧ 𝜑))) | |
2 | eleq1 2815 | . . . . . . 7 ⊢ (𝑥 = 𝐴 → (𝑥 ∈ 𝐵 ↔ 𝐴 ∈ 𝐵)) | |
3 | 2 | adantr 480 | . . . . . 6 ⊢ ((𝑥 = 𝐴 ∧ 𝜑) → (𝑥 ∈ 𝐵 ↔ 𝐴 ∈ 𝐵)) |
4 | 3 | pm5.32ri 575 | . . . . 5 ⊢ ((𝑥 ∈ 𝐵 ∧ (𝑥 = 𝐴 ∧ 𝜑)) ↔ (𝐴 ∈ 𝐵 ∧ (𝑥 = 𝐴 ∧ 𝜑))) |
5 | 4 | bicomi 223 | . . . 4 ⊢ ((𝐴 ∈ 𝐵 ∧ (𝑥 = 𝐴 ∧ 𝜑)) ↔ (𝑥 ∈ 𝐵 ∧ (𝑥 = 𝐴 ∧ 𝜑))) |
6 | 5 | baib 535 | . . 3 ⊢ (𝑥 ∈ 𝐵 → ((𝐴 ∈ 𝐵 ∧ (𝑥 = 𝐴 ∧ 𝜑)) ↔ (𝑥 = 𝐴 ∧ 𝜑))) |
7 | 6 | rexbiia 3086 | . 2 ⊢ (∃𝑥 ∈ 𝐵 (𝐴 ∈ 𝐵 ∧ (𝑥 = 𝐴 ∧ 𝜑)) ↔ ∃𝑥 ∈ 𝐵 (𝑥 = 𝐴 ∧ 𝜑)) |
8 | ceqsrexv.1 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
9 | 8 | ceqsrexv 3638 | . . 3 ⊢ (𝐴 ∈ 𝐵 → (∃𝑥 ∈ 𝐵 (𝑥 = 𝐴 ∧ 𝜑) ↔ 𝜓)) |
10 | 9 | pm5.32i 574 | . 2 ⊢ ((𝐴 ∈ 𝐵 ∧ ∃𝑥 ∈ 𝐵 (𝑥 = 𝐴 ∧ 𝜑)) ↔ (𝐴 ∈ 𝐵 ∧ 𝜓)) |
11 | 1, 7, 10 | 3bitr3i 301 | 1 ⊢ (∃𝑥 ∈ 𝐵 (𝑥 = 𝐴 ∧ 𝜑) ↔ (𝐴 ∈ 𝐵 ∧ 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1533 ∈ wcel 2098 ∃wrex 3064 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2697 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1536 df-ex 1774 df-sb 2060 df-clab 2704 df-cleq 2718 df-clel 2804 df-rex 3065 |
This theorem is referenced by: ceqsralbv 3640 marypha2lem2 9433 txkgen 23511 eq0rabdioph 42092 |
Copyright terms: Public domain | W3C validator |