|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > clel2 | Structured version Visualization version GIF version | ||
| Description: Alternate definition of membership when the member is a set. (Contributed by NM, 18-Aug-1993.) | 
| Ref | Expression | 
|---|---|
| clel2.1 | ⊢ 𝐴 ∈ V | 
| Ref | Expression | 
|---|---|
| clel2 | ⊢ (𝐴 ∈ 𝐵 ↔ ∀𝑥(𝑥 = 𝐴 → 𝑥 ∈ 𝐵)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | clel2.1 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | clel2g 3659 | . 2 ⊢ (𝐴 ∈ V → (𝐴 ∈ 𝐵 ↔ ∀𝑥(𝑥 = 𝐴 → 𝑥 ∈ 𝐵))) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐴 ∈ 𝐵 ↔ ∀𝑥(𝑥 = 𝐴 → 𝑥 ∈ 𝐵)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ↔ wb 206 ∀wal 1538 = wceq 1540 ∈ wcel 2108 Vcvv 3480 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2708 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2065 df-clab 2715 df-cleq 2729 df-clel 2816 | 
| This theorem is referenced by: mptelee 28910 | 
| Copyright terms: Public domain | W3C validator |