MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  clel2 Structured version   Visualization version   GIF version

Theorem clel2 3590
Description: Alternate definition of membership when the member is a set. (Contributed by NM, 18-Aug-1993.)
Hypothesis
Ref Expression
clel2.1 𝐴 ∈ V
Assertion
Ref Expression
clel2 (𝐴𝐵 ↔ ∀𝑥(𝑥 = 𝐴𝑥𝐵))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem clel2
StepHypRef Expression
1 clel2.1 . 2 𝐴 ∈ V
2 clel2g 3588 . 2 (𝐴 ∈ V → (𝐴𝐵 ↔ ∀𝑥(𝑥 = 𝐴𝑥𝐵)))
31, 2ax-mp 5 1 (𝐴𝐵 ↔ ∀𝑥(𝑥 = 𝐴𝑥𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wal 1537   = wceq 1539  wcel 2106  Vcvv 3432
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-tru 1542  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816
This theorem is referenced by:  mptelee  27263
  Copyright terms: Public domain W3C validator