![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > clel2 | Structured version Visualization version GIF version |
Description: Alternate definition of membership when the member is a set. (Contributed by NM, 18-Aug-1993.) |
Ref | Expression |
---|---|
clel2.1 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
clel2 | ⊢ (𝐴 ∈ 𝐵 ↔ ∀𝑥(𝑥 = 𝐴 → 𝑥 ∈ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | clel2.1 | . 2 ⊢ 𝐴 ∈ V | |
2 | clel2g 3647 | . 2 ⊢ (𝐴 ∈ V → (𝐴 ∈ 𝐵 ↔ ∀𝑥(𝑥 = 𝐴 → 𝑥 ∈ 𝐵))) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐴 ∈ 𝐵 ↔ ∀𝑥(𝑥 = 𝐴 → 𝑥 ∈ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∀wal 1538 = wceq 1540 ∈ wcel 2105 Vcvv 3473 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2702 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1543 df-ex 1781 df-sb 2067 df-clab 2709 df-cleq 2723 df-clel 2809 |
This theorem is referenced by: mptelee 28586 |
Copyright terms: Public domain | W3C validator |