| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > clel2g | Structured version Visualization version GIF version | ||
| Description: Alternate definition of membership when the member is a set. (Contributed by NM, 18-Aug-1993.) Strengthen from sethood hypothesis to sethood antecedent. (Revised by BJ, 12-Feb-2022.) Avoid ax-12 2177. (Revised by BJ, 1-Sep-2024.) |
| Ref | Expression |
|---|---|
| clel2g | ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ 𝐵 ↔ ∀𝑥(𝑥 = 𝐴 → 𝑥 ∈ 𝐵))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elisset 2823 | . . 3 ⊢ (𝐴 ∈ 𝑉 → ∃𝑥 𝑥 = 𝐴) | |
| 2 | biimt 360 | . . 3 ⊢ (∃𝑥 𝑥 = 𝐴 → (𝐴 ∈ 𝐵 ↔ (∃𝑥 𝑥 = 𝐴 → 𝐴 ∈ 𝐵))) | |
| 3 | 1, 2 | syl 17 | . 2 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ 𝐵 ↔ (∃𝑥 𝑥 = 𝐴 → 𝐴 ∈ 𝐵))) |
| 4 | 19.23v 1942 | . . 3 ⊢ (∀𝑥(𝑥 = 𝐴 → 𝐴 ∈ 𝐵) ↔ (∃𝑥 𝑥 = 𝐴 → 𝐴 ∈ 𝐵)) | |
| 5 | eleq1 2829 | . . . . . 6 ⊢ (𝑥 = 𝐴 → (𝑥 ∈ 𝐵 ↔ 𝐴 ∈ 𝐵)) | |
| 6 | 5 | bicomd 223 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝐴 ∈ 𝐵 ↔ 𝑥 ∈ 𝐵)) |
| 7 | 6 | pm5.74i 271 | . . . 4 ⊢ ((𝑥 = 𝐴 → 𝐴 ∈ 𝐵) ↔ (𝑥 = 𝐴 → 𝑥 ∈ 𝐵)) |
| 8 | 7 | albii 1819 | . . 3 ⊢ (∀𝑥(𝑥 = 𝐴 → 𝐴 ∈ 𝐵) ↔ ∀𝑥(𝑥 = 𝐴 → 𝑥 ∈ 𝐵)) |
| 9 | 4, 8 | bitr3i 277 | . 2 ⊢ ((∃𝑥 𝑥 = 𝐴 → 𝐴 ∈ 𝐵) ↔ ∀𝑥(𝑥 = 𝐴 → 𝑥 ∈ 𝐵)) |
| 10 | 3, 9 | bitrdi 287 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ 𝐵 ↔ ∀𝑥(𝑥 = 𝐴 → 𝑥 ∈ 𝐵))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∀wal 1538 = wceq 1540 ∃wex 1779 ∈ wcel 2108 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2065 df-clab 2715 df-cleq 2729 df-clel 2816 |
| This theorem is referenced by: clel2 3660 snssgOLD 4784 |
| Copyright terms: Public domain | W3C validator |