MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  clel2g Structured version   Visualization version   GIF version

Theorem clel2g 3659
Description: Alternate definition of membership when the member is a set. (Contributed by NM, 18-Aug-1993.) Strengthen from sethood hypothesis to sethood antecedent. (Revised by BJ, 12-Feb-2022.) Avoid ax-12 2177. (Revised by BJ, 1-Sep-2024.)
Assertion
Ref Expression
clel2g (𝐴𝑉 → (𝐴𝐵 ↔ ∀𝑥(𝑥 = 𝐴𝑥𝐵)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵
Allowed substitution hint:   𝑉(𝑥)

Proof of Theorem clel2g
StepHypRef Expression
1 elisset 2823 . . 3 (𝐴𝑉 → ∃𝑥 𝑥 = 𝐴)
2 biimt 360 . . 3 (∃𝑥 𝑥 = 𝐴 → (𝐴𝐵 ↔ (∃𝑥 𝑥 = 𝐴𝐴𝐵)))
31, 2syl 17 . 2 (𝐴𝑉 → (𝐴𝐵 ↔ (∃𝑥 𝑥 = 𝐴𝐴𝐵)))
4 19.23v 1942 . . 3 (∀𝑥(𝑥 = 𝐴𝐴𝐵) ↔ (∃𝑥 𝑥 = 𝐴𝐴𝐵))
5 eleq1 2829 . . . . . 6 (𝑥 = 𝐴 → (𝑥𝐵𝐴𝐵))
65bicomd 223 . . . . 5 (𝑥 = 𝐴 → (𝐴𝐵𝑥𝐵))
76pm5.74i 271 . . . 4 ((𝑥 = 𝐴𝐴𝐵) ↔ (𝑥 = 𝐴𝑥𝐵))
87albii 1819 . . 3 (∀𝑥(𝑥 = 𝐴𝐴𝐵) ↔ ∀𝑥(𝑥 = 𝐴𝑥𝐵))
94, 8bitr3i 277 . 2 ((∃𝑥 𝑥 = 𝐴𝐴𝐵) ↔ ∀𝑥(𝑥 = 𝐴𝑥𝐵))
103, 9bitrdi 287 1 (𝐴𝑉 → (𝐴𝐵 ↔ ∀𝑥(𝑥 = 𝐴𝑥𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wal 1538   = wceq 1540  wex 1779  wcel 2108
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2708
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-ex 1780  df-sb 2065  df-clab 2715  df-cleq 2729  df-clel 2816
This theorem is referenced by:  clel2  3660  snssgOLD  4784
  Copyright terms: Public domain W3C validator