![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > clel2gOLD | Structured version Visualization version GIF version |
Description: Obsolete version of clel2g 3647 as of 1-Sep-2024. (Contributed by NM, 18-Aug-1993.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
clel2gOLD | ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ 𝐵 ↔ ∀𝑥(𝑥 = 𝐴 → 𝑥 ∈ 𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1917 | . . 3 ⊢ Ⅎ𝑥 𝐴 ∈ 𝐵 | |
2 | eleq1 2821 | . . 3 ⊢ (𝑥 = 𝐴 → (𝑥 ∈ 𝐵 ↔ 𝐴 ∈ 𝐵)) | |
3 | 1, 2 | ceqsalg 3507 | . 2 ⊢ (𝐴 ∈ 𝑉 → (∀𝑥(𝑥 = 𝐴 → 𝑥 ∈ 𝐵) ↔ 𝐴 ∈ 𝐵)) |
4 | 3 | bicomd 222 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ 𝐵 ↔ ∀𝑥(𝑥 = 𝐴 → 𝑥 ∈ 𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∀wal 1539 = wceq 1541 ∈ wcel 2106 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-12 2171 ax-ext 2703 |
This theorem depends on definitions: df-bi 206 df-an 397 df-3an 1089 df-tru 1544 df-ex 1782 df-nf 1786 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |