MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  clel2gOLD Structured version   Visualization version   GIF version

Theorem clel2gOLD 3643
Description: Obsolete version of clel2g 3642 as of 1-Sep-2024. (Contributed by NM, 18-Aug-1993.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
clel2gOLD (𝐴𝑉 → (𝐴𝐵 ↔ ∀𝑥(𝑥 = 𝐴𝑥𝐵)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵
Allowed substitution hint:   𝑉(𝑥)

Proof of Theorem clel2gOLD
StepHypRef Expression
1 nfv 1909 . . 3 𝑥 𝐴𝐵
2 eleq1 2815 . . 3 (𝑥 = 𝐴 → (𝑥𝐵𝐴𝐵))
31, 2ceqsalg 3502 . 2 (𝐴𝑉 → (∀𝑥(𝑥 = 𝐴𝑥𝐵) ↔ 𝐴𝐵))
43bicomd 222 1 (𝐴𝑉 → (𝐴𝐵 ↔ ∀𝑥(𝑥 = 𝐴𝑥𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wal 1531   = wceq 1533  wcel 2098
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-12 2163  ax-ext 2697
This theorem depends on definitions:  df-bi 206  df-an 396  df-3an 1086  df-tru 1536  df-ex 1774  df-nf 1778  df-sb 2060  df-clab 2704  df-cleq 2718  df-clel 2804
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator