MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  clel2gOLD Structured version   Visualization version   GIF version

Theorem clel2gOLD 3582
Description: Obsolete version of clel2g 3581 as of 1-Sep-2024. (Contributed by NM, 18-Aug-1993.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
clel2gOLD (𝐴𝑉 → (𝐴𝐵 ↔ ∀𝑥(𝑥 = 𝐴𝑥𝐵)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵
Allowed substitution hint:   𝑉(𝑥)

Proof of Theorem clel2gOLD
StepHypRef Expression
1 nfv 1918 . . 3 𝑥 𝐴𝐵
2 eleq1 2826 . . 3 (𝑥 = 𝐴 → (𝑥𝐵𝐴𝐵))
31, 2ceqsalg 3454 . 2 (𝐴𝑉 → (∀𝑥(𝑥 = 𝐴𝑥𝐵) ↔ 𝐴𝐵))
43bicomd 222 1 (𝐴𝑉 → (𝐴𝐵 ↔ ∀𝑥(𝑥 = 𝐴𝑥𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wal 1537   = wceq 1539  wcel 2108
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-12 2173  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-3an 1087  df-tru 1542  df-ex 1784  df-nf 1788  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator