MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  clel3g Structured version   Visualization version   GIF version

Theorem clel3g 3651
Description: Alternate definition of membership in a set. (Contributed by NM, 13-Aug-2005.)
Assertion
Ref Expression
clel3g (𝐵𝑉 → (𝐴𝐵 ↔ ∃𝑥(𝑥 = 𝐵𝐴𝑥)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵
Allowed substitution hint:   𝑉(𝑥)

Proof of Theorem clel3g
StepHypRef Expression
1 eleq2 2820 . . 3 (𝑥 = 𝐵 → (𝐴𝑥𝐴𝐵))
21ceqsexgv 3643 . 2 (𝐵𝑉 → (∃𝑥(𝑥 = 𝐵𝐴𝑥) ↔ 𝐴𝐵))
32bicomd 222 1 (𝐵𝑉 → (𝐴𝐵 ↔ ∃𝑥(𝑥 = 𝐵𝐴𝑥)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394   = wceq 1539  wex 1779  wcel 2104
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-ext 2701
This theorem depends on definitions:  df-bi 206  df-an 395  df-tru 1542  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2722  df-clel 2808
This theorem is referenced by:  clel3  3652  uniprg  4926  dfiun2gOLD  5035
  Copyright terms: Public domain W3C validator