| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > clel3g | Structured version Visualization version GIF version | ||
| Description: Alternate definition of membership in a set. (Contributed by NM, 13-Aug-2005.) |
| Ref | Expression |
|---|---|
| clel3g | ⊢ (𝐵 ∈ 𝑉 → (𝐴 ∈ 𝐵 ↔ ∃𝑥(𝑥 = 𝐵 ∧ 𝐴 ∈ 𝑥))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq2 2823 | . . 3 ⊢ (𝑥 = 𝐵 → (𝐴 ∈ 𝑥 ↔ 𝐴 ∈ 𝐵)) | |
| 2 | 1 | ceqsexgv 3633 | . 2 ⊢ (𝐵 ∈ 𝑉 → (∃𝑥(𝑥 = 𝐵 ∧ 𝐴 ∈ 𝑥) ↔ 𝐴 ∈ 𝐵)) |
| 3 | 2 | bicomd 223 | 1 ⊢ (𝐵 ∈ 𝑉 → (𝐴 ∈ 𝐵 ↔ ∃𝑥(𝑥 = 𝐵 ∧ 𝐴 ∈ 𝑥))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∃wex 1779 ∈ wcel 2108 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 |
| This theorem is referenced by: clel3 3641 uniprg 4899 dfiun2gOLD 5007 |
| Copyright terms: Public domain | W3C validator |