MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  clel3g Structured version   Visualization version   GIF version

Theorem clel3g 3584
Description: Alternate definition of membership in a set. (Contributed by NM, 13-Aug-2005.)
Assertion
Ref Expression
clel3g (𝐵𝑉 → (𝐴𝐵 ↔ ∃𝑥(𝑥 = 𝐵𝐴𝑥)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵
Allowed substitution hint:   𝑉(𝑥)

Proof of Theorem clel3g
StepHypRef Expression
1 eleq2 2827 . . 3 (𝑥 = 𝐵 → (𝐴𝑥𝐴𝐵))
21ceqsexgv 3576 . 2 (𝐵𝑉 → (∃𝑥(𝑥 = 𝐵𝐴𝑥) ↔ 𝐴𝐵))
32bicomd 222 1 (𝐵𝑉 → (𝐴𝐵 ↔ ∃𝑥(𝑥 = 𝐵𝐴𝑥)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1539  wex 1783  wcel 2108
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1542  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817
This theorem is referenced by:  clel3  3585  uniprg  4853  dfiun2g  4957
  Copyright terms: Public domain W3C validator