![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > clel3g | Structured version Visualization version GIF version |
Description: Alternate definition of membership in a set. (Contributed by NM, 13-Aug-2005.) |
Ref | Expression |
---|---|
clel3g | ⊢ (𝐵 ∈ 𝑉 → (𝐴 ∈ 𝐵 ↔ ∃𝑥(𝑥 = 𝐵 ∧ 𝐴 ∈ 𝑥))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq2 2820 | . . 3 ⊢ (𝑥 = 𝐵 → (𝐴 ∈ 𝑥 ↔ 𝐴 ∈ 𝐵)) | |
2 | 1 | ceqsexgv 3643 | . 2 ⊢ (𝐵 ∈ 𝑉 → (∃𝑥(𝑥 = 𝐵 ∧ 𝐴 ∈ 𝑥) ↔ 𝐴 ∈ 𝐵)) |
3 | 2 | bicomd 222 | 1 ⊢ (𝐵 ∈ 𝑉 → (𝐴 ∈ 𝐵 ↔ ∃𝑥(𝑥 = 𝐵 ∧ 𝐴 ∈ 𝑥))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 394 = wceq 1539 ∃wex 1779 ∈ wcel 2104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-ext 2701 |
This theorem depends on definitions: df-bi 206 df-an 395 df-tru 1542 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2722 df-clel 2808 |
This theorem is referenced by: clel3 3652 uniprg 4926 dfiun2gOLD 5035 |
Copyright terms: Public domain | W3C validator |