MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mptelee Structured version   Visualization version   GIF version

Theorem mptelee 28822
Description: A condition for a mapping to be an element of a Euclidean space. (Contributed by Scott Fenton, 7-Jun-2013.)
Assertion
Ref Expression
mptelee (𝑁 ∈ ℕ → ((𝑘 ∈ (1...𝑁) ↦ (𝐴𝐹𝐵)) ∈ (𝔼‘𝑁) ↔ ∀𝑘 ∈ (1...𝑁)(𝐴𝐹𝐵) ∈ ℝ))
Distinct variable group:   𝑘,𝑁
Allowed substitution hints:   𝐴(𝑘)   𝐵(𝑘)   𝐹(𝑘)

Proof of Theorem mptelee
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 elee 28821 . 2 (𝑁 ∈ ℕ → ((𝑘 ∈ (1...𝑁) ↦ (𝐴𝐹𝐵)) ∈ (𝔼‘𝑁) ↔ (𝑘 ∈ (1...𝑁) ↦ (𝐴𝐹𝐵)):(1...𝑁)⟶ℝ))
2 ovex 7420 . . . . 5 (𝐴𝐹𝐵) ∈ V
3 eqid 2729 . . . . 5 (𝑘 ∈ (1...𝑁) ↦ (𝐴𝐹𝐵)) = (𝑘 ∈ (1...𝑁) ↦ (𝐴𝐹𝐵))
42, 3fnmpti 6661 . . . 4 (𝑘 ∈ (1...𝑁) ↦ (𝐴𝐹𝐵)) Fn (1...𝑁)
5 df-f 6515 . . . 4 ((𝑘 ∈ (1...𝑁) ↦ (𝐴𝐹𝐵)):(1...𝑁)⟶ℝ ↔ ((𝑘 ∈ (1...𝑁) ↦ (𝐴𝐹𝐵)) Fn (1...𝑁) ∧ ran (𝑘 ∈ (1...𝑁) ↦ (𝐴𝐹𝐵)) ⊆ ℝ))
64, 5mpbiran 709 . . 3 ((𝑘 ∈ (1...𝑁) ↦ (𝐴𝐹𝐵)):(1...𝑁)⟶ℝ ↔ ran (𝑘 ∈ (1...𝑁) ↦ (𝐴𝐹𝐵)) ⊆ ℝ)
73rnmpt 5921 . . . . 5 ran (𝑘 ∈ (1...𝑁) ↦ (𝐴𝐹𝐵)) = {𝑎 ∣ ∃𝑘 ∈ (1...𝑁)𝑎 = (𝐴𝐹𝐵)}
87sseq1i 3975 . . . 4 (ran (𝑘 ∈ (1...𝑁) ↦ (𝐴𝐹𝐵)) ⊆ ℝ ↔ {𝑎 ∣ ∃𝑘 ∈ (1...𝑁)𝑎 = (𝐴𝐹𝐵)} ⊆ ℝ)
9 abss 4026 . . . . 5 ({𝑎 ∣ ∃𝑘 ∈ (1...𝑁)𝑎 = (𝐴𝐹𝐵)} ⊆ ℝ ↔ ∀𝑎(∃𝑘 ∈ (1...𝑁)𝑎 = (𝐴𝐹𝐵) → 𝑎 ∈ ℝ))
10 nfre1 3262 . . . . . . . . 9 𝑘𝑘 ∈ (1...𝑁)𝑎 = (𝐴𝐹𝐵)
11 nfv 1914 . . . . . . . . 9 𝑘 𝑎 ∈ ℝ
1210, 11nfim 1896 . . . . . . . 8 𝑘(∃𝑘 ∈ (1...𝑁)𝑎 = (𝐴𝐹𝐵) → 𝑎 ∈ ℝ)
1312nfal 2322 . . . . . . 7 𝑘𝑎(∃𝑘 ∈ (1...𝑁)𝑎 = (𝐴𝐹𝐵) → 𝑎 ∈ ℝ)
14 r19.23v 3161 . . . . . . . . 9 (∀𝑘 ∈ (1...𝑁)(𝑎 = (𝐴𝐹𝐵) → 𝑎 ∈ ℝ) ↔ (∃𝑘 ∈ (1...𝑁)𝑎 = (𝐴𝐹𝐵) → 𝑎 ∈ ℝ))
1514albii 1819 . . . . . . . 8 (∀𝑎𝑘 ∈ (1...𝑁)(𝑎 = (𝐴𝐹𝐵) → 𝑎 ∈ ℝ) ↔ ∀𝑎(∃𝑘 ∈ (1...𝑁)𝑎 = (𝐴𝐹𝐵) → 𝑎 ∈ ℝ))
16 ralcom4 3263 . . . . . . . . 9 (∀𝑘 ∈ (1...𝑁)∀𝑎(𝑎 = (𝐴𝐹𝐵) → 𝑎 ∈ ℝ) ↔ ∀𝑎𝑘 ∈ (1...𝑁)(𝑎 = (𝐴𝐹𝐵) → 𝑎 ∈ ℝ))
17 rsp 3225 . . . . . . . . . 10 (∀𝑘 ∈ (1...𝑁)∀𝑎(𝑎 = (𝐴𝐹𝐵) → 𝑎 ∈ ℝ) → (𝑘 ∈ (1...𝑁) → ∀𝑎(𝑎 = (𝐴𝐹𝐵) → 𝑎 ∈ ℝ)))
182clel2 3626 . . . . . . . . . 10 ((𝐴𝐹𝐵) ∈ ℝ ↔ ∀𝑎(𝑎 = (𝐴𝐹𝐵) → 𝑎 ∈ ℝ))
1917, 18imbitrrdi 252 . . . . . . . . 9 (∀𝑘 ∈ (1...𝑁)∀𝑎(𝑎 = (𝐴𝐹𝐵) → 𝑎 ∈ ℝ) → (𝑘 ∈ (1...𝑁) → (𝐴𝐹𝐵) ∈ ℝ))
2016, 19sylbir 235 . . . . . . . 8 (∀𝑎𝑘 ∈ (1...𝑁)(𝑎 = (𝐴𝐹𝐵) → 𝑎 ∈ ℝ) → (𝑘 ∈ (1...𝑁) → (𝐴𝐹𝐵) ∈ ℝ))
2115, 20sylbir 235 . . . . . . 7 (∀𝑎(∃𝑘 ∈ (1...𝑁)𝑎 = (𝐴𝐹𝐵) → 𝑎 ∈ ℝ) → (𝑘 ∈ (1...𝑁) → (𝐴𝐹𝐵) ∈ ℝ))
2213, 21ralrimi 3235 . . . . . 6 (∀𝑎(∃𝑘 ∈ (1...𝑁)𝑎 = (𝐴𝐹𝐵) → 𝑎 ∈ ℝ) → ∀𝑘 ∈ (1...𝑁)(𝐴𝐹𝐵) ∈ ℝ)
23 nfra1 3261 . . . . . . . 8 𝑘𝑘 ∈ (1...𝑁)(𝐴𝐹𝐵) ∈ ℝ
24 rsp 3225 . . . . . . . . 9 (∀𝑘 ∈ (1...𝑁)(𝐴𝐹𝐵) ∈ ℝ → (𝑘 ∈ (1...𝑁) → (𝐴𝐹𝐵) ∈ ℝ))
25 eleq1a 2823 . . . . . . . . 9 ((𝐴𝐹𝐵) ∈ ℝ → (𝑎 = (𝐴𝐹𝐵) → 𝑎 ∈ ℝ))
2624, 25syl6 35 . . . . . . . 8 (∀𝑘 ∈ (1...𝑁)(𝐴𝐹𝐵) ∈ ℝ → (𝑘 ∈ (1...𝑁) → (𝑎 = (𝐴𝐹𝐵) → 𝑎 ∈ ℝ)))
2723, 11, 26rexlimd 3244 . . . . . . 7 (∀𝑘 ∈ (1...𝑁)(𝐴𝐹𝐵) ∈ ℝ → (∃𝑘 ∈ (1...𝑁)𝑎 = (𝐴𝐹𝐵) → 𝑎 ∈ ℝ))
2827alrimiv 1927 . . . . . 6 (∀𝑘 ∈ (1...𝑁)(𝐴𝐹𝐵) ∈ ℝ → ∀𝑎(∃𝑘 ∈ (1...𝑁)𝑎 = (𝐴𝐹𝐵) → 𝑎 ∈ ℝ))
2922, 28impbii 209 . . . . 5 (∀𝑎(∃𝑘 ∈ (1...𝑁)𝑎 = (𝐴𝐹𝐵) → 𝑎 ∈ ℝ) ↔ ∀𝑘 ∈ (1...𝑁)(𝐴𝐹𝐵) ∈ ℝ)
309, 29bitri 275 . . . 4 ({𝑎 ∣ ∃𝑘 ∈ (1...𝑁)𝑎 = (𝐴𝐹𝐵)} ⊆ ℝ ↔ ∀𝑘 ∈ (1...𝑁)(𝐴𝐹𝐵) ∈ ℝ)
318, 30bitri 275 . . 3 (ran (𝑘 ∈ (1...𝑁) ↦ (𝐴𝐹𝐵)) ⊆ ℝ ↔ ∀𝑘 ∈ (1...𝑁)(𝐴𝐹𝐵) ∈ ℝ)
326, 31bitri 275 . 2 ((𝑘 ∈ (1...𝑁) ↦ (𝐴𝐹𝐵)):(1...𝑁)⟶ℝ ↔ ∀𝑘 ∈ (1...𝑁)(𝐴𝐹𝐵) ∈ ℝ)
331, 32bitrdi 287 1 (𝑁 ∈ ℕ → ((𝑘 ∈ (1...𝑁) ↦ (𝐴𝐹𝐵)) ∈ (𝔼‘𝑁) ↔ ∀𝑘 ∈ (1...𝑁)(𝐴𝐹𝐵) ∈ ℝ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wal 1538   = wceq 1540  wcel 2109  {cab 2707  wral 3044  wrex 3053  wss 3914  cmpt 5188  ran crn 5639   Fn wfn 6506  wf 6507  cfv 6511  (class class class)co 7387  cr 11067  1c1 11069  cn 12186  ...cfz 13468  𝔼cee 28815
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-sbc 3754  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-fv 6519  df-ov 7390  df-oprab 7391  df-mpo 7392  df-map 8801  df-ee 28818
This theorem is referenced by:  eleesub  28838  eleesubd  28839  axsegconlem1  28844  axsegconlem8  28851  axpasch  28868  axeuclidlem  28889  axcontlem2  28892
  Copyright terms: Public domain W3C validator