| Step | Hyp | Ref
| Expression |
| 1 | | elee 28878 |
. 2
⊢ (𝑁 ∈ ℕ → ((𝑘 ∈ (1...𝑁) ↦ (𝐴𝐹𝐵)) ∈ (𝔼‘𝑁) ↔ (𝑘 ∈ (1...𝑁) ↦ (𝐴𝐹𝐵)):(1...𝑁)⟶ℝ)) |
| 2 | | ovex 7443 |
. . . . 5
⊢ (𝐴𝐹𝐵) ∈ V |
| 3 | | eqid 2736 |
. . . . 5
⊢ (𝑘 ∈ (1...𝑁) ↦ (𝐴𝐹𝐵)) = (𝑘 ∈ (1...𝑁) ↦ (𝐴𝐹𝐵)) |
| 4 | 2, 3 | fnmpti 6686 |
. . . 4
⊢ (𝑘 ∈ (1...𝑁) ↦ (𝐴𝐹𝐵)) Fn (1...𝑁) |
| 5 | | df-f 6540 |
. . . 4
⊢ ((𝑘 ∈ (1...𝑁) ↦ (𝐴𝐹𝐵)):(1...𝑁)⟶ℝ ↔ ((𝑘 ∈ (1...𝑁) ↦ (𝐴𝐹𝐵)) Fn (1...𝑁) ∧ ran (𝑘 ∈ (1...𝑁) ↦ (𝐴𝐹𝐵)) ⊆ ℝ)) |
| 6 | 4, 5 | mpbiran 709 |
. . 3
⊢ ((𝑘 ∈ (1...𝑁) ↦ (𝐴𝐹𝐵)):(1...𝑁)⟶ℝ ↔ ran (𝑘 ∈ (1...𝑁) ↦ (𝐴𝐹𝐵)) ⊆ ℝ) |
| 7 | 3 | rnmpt 5942 |
. . . . 5
⊢ ran
(𝑘 ∈ (1...𝑁) ↦ (𝐴𝐹𝐵)) = {𝑎 ∣ ∃𝑘 ∈ (1...𝑁)𝑎 = (𝐴𝐹𝐵)} |
| 8 | 7 | sseq1i 3992 |
. . . 4
⊢ (ran
(𝑘 ∈ (1...𝑁) ↦ (𝐴𝐹𝐵)) ⊆ ℝ ↔ {𝑎 ∣ ∃𝑘 ∈ (1...𝑁)𝑎 = (𝐴𝐹𝐵)} ⊆ ℝ) |
| 9 | | abss 4043 |
. . . . 5
⊢ ({𝑎 ∣ ∃𝑘 ∈ (1...𝑁)𝑎 = (𝐴𝐹𝐵)} ⊆ ℝ ↔ ∀𝑎(∃𝑘 ∈ (1...𝑁)𝑎 = (𝐴𝐹𝐵) → 𝑎 ∈ ℝ)) |
| 10 | | nfre1 3271 |
. . . . . . . . 9
⊢
Ⅎ𝑘∃𝑘 ∈ (1...𝑁)𝑎 = (𝐴𝐹𝐵) |
| 11 | | nfv 1914 |
. . . . . . . . 9
⊢
Ⅎ𝑘 𝑎 ∈ ℝ |
| 12 | 10, 11 | nfim 1896 |
. . . . . . . 8
⊢
Ⅎ𝑘(∃𝑘 ∈ (1...𝑁)𝑎 = (𝐴𝐹𝐵) → 𝑎 ∈ ℝ) |
| 13 | 12 | nfal 2324 |
. . . . . . 7
⊢
Ⅎ𝑘∀𝑎(∃𝑘 ∈ (1...𝑁)𝑎 = (𝐴𝐹𝐵) → 𝑎 ∈ ℝ) |
| 14 | | r19.23v 3169 |
. . . . . . . . 9
⊢
(∀𝑘 ∈
(1...𝑁)(𝑎 = (𝐴𝐹𝐵) → 𝑎 ∈ ℝ) ↔ (∃𝑘 ∈ (1...𝑁)𝑎 = (𝐴𝐹𝐵) → 𝑎 ∈ ℝ)) |
| 15 | 14 | albii 1819 |
. . . . . . . 8
⊢
(∀𝑎∀𝑘 ∈ (1...𝑁)(𝑎 = (𝐴𝐹𝐵) → 𝑎 ∈ ℝ) ↔ ∀𝑎(∃𝑘 ∈ (1...𝑁)𝑎 = (𝐴𝐹𝐵) → 𝑎 ∈ ℝ)) |
| 16 | | ralcom4 3272 |
. . . . . . . . 9
⊢
(∀𝑘 ∈
(1...𝑁)∀𝑎(𝑎 = (𝐴𝐹𝐵) → 𝑎 ∈ ℝ) ↔ ∀𝑎∀𝑘 ∈ (1...𝑁)(𝑎 = (𝐴𝐹𝐵) → 𝑎 ∈ ℝ)) |
| 17 | | rsp 3234 |
. . . . . . . . . 10
⊢
(∀𝑘 ∈
(1...𝑁)∀𝑎(𝑎 = (𝐴𝐹𝐵) → 𝑎 ∈ ℝ) → (𝑘 ∈ (1...𝑁) → ∀𝑎(𝑎 = (𝐴𝐹𝐵) → 𝑎 ∈ ℝ))) |
| 18 | 2 | clel2 3644 |
. . . . . . . . . 10
⊢ ((𝐴𝐹𝐵) ∈ ℝ ↔ ∀𝑎(𝑎 = (𝐴𝐹𝐵) → 𝑎 ∈ ℝ)) |
| 19 | 17, 18 | imbitrrdi 252 |
. . . . . . . . 9
⊢
(∀𝑘 ∈
(1...𝑁)∀𝑎(𝑎 = (𝐴𝐹𝐵) → 𝑎 ∈ ℝ) → (𝑘 ∈ (1...𝑁) → (𝐴𝐹𝐵) ∈ ℝ)) |
| 20 | 16, 19 | sylbir 235 |
. . . . . . . 8
⊢
(∀𝑎∀𝑘 ∈ (1...𝑁)(𝑎 = (𝐴𝐹𝐵) → 𝑎 ∈ ℝ) → (𝑘 ∈ (1...𝑁) → (𝐴𝐹𝐵) ∈ ℝ)) |
| 21 | 15, 20 | sylbir 235 |
. . . . . . 7
⊢
(∀𝑎(∃𝑘 ∈ (1...𝑁)𝑎 = (𝐴𝐹𝐵) → 𝑎 ∈ ℝ) → (𝑘 ∈ (1...𝑁) → (𝐴𝐹𝐵) ∈ ℝ)) |
| 22 | 13, 21 | ralrimi 3244 |
. . . . . 6
⊢
(∀𝑎(∃𝑘 ∈ (1...𝑁)𝑎 = (𝐴𝐹𝐵) → 𝑎 ∈ ℝ) → ∀𝑘 ∈ (1...𝑁)(𝐴𝐹𝐵) ∈ ℝ) |
| 23 | | nfra1 3270 |
. . . . . . . 8
⊢
Ⅎ𝑘∀𝑘 ∈ (1...𝑁)(𝐴𝐹𝐵) ∈ ℝ |
| 24 | | rsp 3234 |
. . . . . . . . 9
⊢
(∀𝑘 ∈
(1...𝑁)(𝐴𝐹𝐵) ∈ ℝ → (𝑘 ∈ (1...𝑁) → (𝐴𝐹𝐵) ∈ ℝ)) |
| 25 | | eleq1a 2830 |
. . . . . . . . 9
⊢ ((𝐴𝐹𝐵) ∈ ℝ → (𝑎 = (𝐴𝐹𝐵) → 𝑎 ∈ ℝ)) |
| 26 | 24, 25 | syl6 35 |
. . . . . . . 8
⊢
(∀𝑘 ∈
(1...𝑁)(𝐴𝐹𝐵) ∈ ℝ → (𝑘 ∈ (1...𝑁) → (𝑎 = (𝐴𝐹𝐵) → 𝑎 ∈ ℝ))) |
| 27 | 23, 11, 26 | rexlimd 3253 |
. . . . . . 7
⊢
(∀𝑘 ∈
(1...𝑁)(𝐴𝐹𝐵) ∈ ℝ → (∃𝑘 ∈ (1...𝑁)𝑎 = (𝐴𝐹𝐵) → 𝑎 ∈ ℝ)) |
| 28 | 27 | alrimiv 1927 |
. . . . . 6
⊢
(∀𝑘 ∈
(1...𝑁)(𝐴𝐹𝐵) ∈ ℝ → ∀𝑎(∃𝑘 ∈ (1...𝑁)𝑎 = (𝐴𝐹𝐵) → 𝑎 ∈ ℝ)) |
| 29 | 22, 28 | impbii 209 |
. . . . 5
⊢
(∀𝑎(∃𝑘 ∈ (1...𝑁)𝑎 = (𝐴𝐹𝐵) → 𝑎 ∈ ℝ) ↔ ∀𝑘 ∈ (1...𝑁)(𝐴𝐹𝐵) ∈ ℝ) |
| 30 | 9, 29 | bitri 275 |
. . . 4
⊢ ({𝑎 ∣ ∃𝑘 ∈ (1...𝑁)𝑎 = (𝐴𝐹𝐵)} ⊆ ℝ ↔ ∀𝑘 ∈ (1...𝑁)(𝐴𝐹𝐵) ∈ ℝ) |
| 31 | 8, 30 | bitri 275 |
. . 3
⊢ (ran
(𝑘 ∈ (1...𝑁) ↦ (𝐴𝐹𝐵)) ⊆ ℝ ↔ ∀𝑘 ∈ (1...𝑁)(𝐴𝐹𝐵) ∈ ℝ) |
| 32 | 6, 31 | bitri 275 |
. 2
⊢ ((𝑘 ∈ (1...𝑁) ↦ (𝐴𝐹𝐵)):(1...𝑁)⟶ℝ ↔ ∀𝑘 ∈ (1...𝑁)(𝐴𝐹𝐵) ∈ ℝ) |
| 33 | 1, 32 | bitrdi 287 |
1
⊢ (𝑁 ∈ ℕ → ((𝑘 ∈ (1...𝑁) ↦ (𝐴𝐹𝐵)) ∈ (𝔼‘𝑁) ↔ ∀𝑘 ∈ (1...𝑁)(𝐴𝐹𝐵) ∈ ℝ)) |