MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mptelee Structured version   Visualization version   GIF version

Theorem mptelee 26614
Description: A condition for a mapping to be an element of a Euclidean space. (Contributed by Scott Fenton, 7-Jun-2013.)
Assertion
Ref Expression
mptelee (𝑁 ∈ ℕ → ((𝑘 ∈ (1...𝑁) ↦ (𝐴𝐹𝐵)) ∈ (𝔼‘𝑁) ↔ ∀𝑘 ∈ (1...𝑁)(𝐴𝐹𝐵) ∈ ℝ))
Distinct variable group:   𝑘,𝑁
Allowed substitution hints:   𝐴(𝑘)   𝐵(𝑘)   𝐹(𝑘)

Proof of Theorem mptelee
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 elee 26613 . 2 (𝑁 ∈ ℕ → ((𝑘 ∈ (1...𝑁) ↦ (𝐴𝐹𝐵)) ∈ (𝔼‘𝑁) ↔ (𝑘 ∈ (1...𝑁) ↦ (𝐴𝐹𝐵)):(1...𝑁)⟶ℝ))
2 ovex 7183 . . . . 5 (𝐴𝐹𝐵) ∈ V
3 eqid 2826 . . . . 5 (𝑘 ∈ (1...𝑁) ↦ (𝐴𝐹𝐵)) = (𝑘 ∈ (1...𝑁) ↦ (𝐴𝐹𝐵))
42, 3fnmpti 6490 . . . 4 (𝑘 ∈ (1...𝑁) ↦ (𝐴𝐹𝐵)) Fn (1...𝑁)
5 df-f 6358 . . . 4 ((𝑘 ∈ (1...𝑁) ↦ (𝐴𝐹𝐵)):(1...𝑁)⟶ℝ ↔ ((𝑘 ∈ (1...𝑁) ↦ (𝐴𝐹𝐵)) Fn (1...𝑁) ∧ ran (𝑘 ∈ (1...𝑁) ↦ (𝐴𝐹𝐵)) ⊆ ℝ))
64, 5mpbiran 705 . . 3 ((𝑘 ∈ (1...𝑁) ↦ (𝐴𝐹𝐵)):(1...𝑁)⟶ℝ ↔ ran (𝑘 ∈ (1...𝑁) ↦ (𝐴𝐹𝐵)) ⊆ ℝ)
73rnmpt 5826 . . . . 5 ran (𝑘 ∈ (1...𝑁) ↦ (𝐴𝐹𝐵)) = {𝑎 ∣ ∃𝑘 ∈ (1...𝑁)𝑎 = (𝐴𝐹𝐵)}
87sseq1i 3999 . . . 4 (ran (𝑘 ∈ (1...𝑁) ↦ (𝐴𝐹𝐵)) ⊆ ℝ ↔ {𝑎 ∣ ∃𝑘 ∈ (1...𝑁)𝑎 = (𝐴𝐹𝐵)} ⊆ ℝ)
9 abss 4044 . . . . 5 ({𝑎 ∣ ∃𝑘 ∈ (1...𝑁)𝑎 = (𝐴𝐹𝐵)} ⊆ ℝ ↔ ∀𝑎(∃𝑘 ∈ (1...𝑁)𝑎 = (𝐴𝐹𝐵) → 𝑎 ∈ ℝ))
10 nfre1 3311 . . . . . . . . 9 𝑘𝑘 ∈ (1...𝑁)𝑎 = (𝐴𝐹𝐵)
11 nfv 1908 . . . . . . . . 9 𝑘 𝑎 ∈ ℝ
1210, 11nfim 1890 . . . . . . . 8 𝑘(∃𝑘 ∈ (1...𝑁)𝑎 = (𝐴𝐹𝐵) → 𝑎 ∈ ℝ)
1312nfal 2336 . . . . . . 7 𝑘𝑎(∃𝑘 ∈ (1...𝑁)𝑎 = (𝐴𝐹𝐵) → 𝑎 ∈ ℝ)
14 r19.23v 3284 . . . . . . . . 9 (∀𝑘 ∈ (1...𝑁)(𝑎 = (𝐴𝐹𝐵) → 𝑎 ∈ ℝ) ↔ (∃𝑘 ∈ (1...𝑁)𝑎 = (𝐴𝐹𝐵) → 𝑎 ∈ ℝ))
1514albii 1813 . . . . . . . 8 (∀𝑎𝑘 ∈ (1...𝑁)(𝑎 = (𝐴𝐹𝐵) → 𝑎 ∈ ℝ) ↔ ∀𝑎(∃𝑘 ∈ (1...𝑁)𝑎 = (𝐴𝐹𝐵) → 𝑎 ∈ ℝ))
16 ralcom4 3240 . . . . . . . . 9 (∀𝑘 ∈ (1...𝑁)∀𝑎(𝑎 = (𝐴𝐹𝐵) → 𝑎 ∈ ℝ) ↔ ∀𝑎𝑘 ∈ (1...𝑁)(𝑎 = (𝐴𝐹𝐵) → 𝑎 ∈ ℝ))
17 rsp 3210 . . . . . . . . . 10 (∀𝑘 ∈ (1...𝑁)∀𝑎(𝑎 = (𝐴𝐹𝐵) → 𝑎 ∈ ℝ) → (𝑘 ∈ (1...𝑁) → ∀𝑎(𝑎 = (𝐴𝐹𝐵) → 𝑎 ∈ ℝ)))
182clel2 3657 . . . . . . . . . 10 ((𝐴𝐹𝐵) ∈ ℝ ↔ ∀𝑎(𝑎 = (𝐴𝐹𝐵) → 𝑎 ∈ ℝ))
1917, 18syl6ibr 253 . . . . . . . . 9 (∀𝑘 ∈ (1...𝑁)∀𝑎(𝑎 = (𝐴𝐹𝐵) → 𝑎 ∈ ℝ) → (𝑘 ∈ (1...𝑁) → (𝐴𝐹𝐵) ∈ ℝ))
2016, 19sylbir 236 . . . . . . . 8 (∀𝑎𝑘 ∈ (1...𝑁)(𝑎 = (𝐴𝐹𝐵) → 𝑎 ∈ ℝ) → (𝑘 ∈ (1...𝑁) → (𝐴𝐹𝐵) ∈ ℝ))
2115, 20sylbir 236 . . . . . . 7 (∀𝑎(∃𝑘 ∈ (1...𝑁)𝑎 = (𝐴𝐹𝐵) → 𝑎 ∈ ℝ) → (𝑘 ∈ (1...𝑁) → (𝐴𝐹𝐵) ∈ ℝ))
2213, 21ralrimi 3221 . . . . . 6 (∀𝑎(∃𝑘 ∈ (1...𝑁)𝑎 = (𝐴𝐹𝐵) → 𝑎 ∈ ℝ) → ∀𝑘 ∈ (1...𝑁)(𝐴𝐹𝐵) ∈ ℝ)
23 nfra1 3224 . . . . . . . 8 𝑘𝑘 ∈ (1...𝑁)(𝐴𝐹𝐵) ∈ ℝ
24 rsp 3210 . . . . . . . . 9 (∀𝑘 ∈ (1...𝑁)(𝐴𝐹𝐵) ∈ ℝ → (𝑘 ∈ (1...𝑁) → (𝐴𝐹𝐵) ∈ ℝ))
25 eleq1a 2913 . . . . . . . . 9 ((𝐴𝐹𝐵) ∈ ℝ → (𝑎 = (𝐴𝐹𝐵) → 𝑎 ∈ ℝ))
2624, 25syl6 35 . . . . . . . 8 (∀𝑘 ∈ (1...𝑁)(𝐴𝐹𝐵) ∈ ℝ → (𝑘 ∈ (1...𝑁) → (𝑎 = (𝐴𝐹𝐵) → 𝑎 ∈ ℝ)))
2723, 11, 26rexlimd 3322 . . . . . . 7 (∀𝑘 ∈ (1...𝑁)(𝐴𝐹𝐵) ∈ ℝ → (∃𝑘 ∈ (1...𝑁)𝑎 = (𝐴𝐹𝐵) → 𝑎 ∈ ℝ))
2827alrimiv 1921 . . . . . 6 (∀𝑘 ∈ (1...𝑁)(𝐴𝐹𝐵) ∈ ℝ → ∀𝑎(∃𝑘 ∈ (1...𝑁)𝑎 = (𝐴𝐹𝐵) → 𝑎 ∈ ℝ))
2922, 28impbii 210 . . . . 5 (∀𝑎(∃𝑘 ∈ (1...𝑁)𝑎 = (𝐴𝐹𝐵) → 𝑎 ∈ ℝ) ↔ ∀𝑘 ∈ (1...𝑁)(𝐴𝐹𝐵) ∈ ℝ)
309, 29bitri 276 . . . 4 ({𝑎 ∣ ∃𝑘 ∈ (1...𝑁)𝑎 = (𝐴𝐹𝐵)} ⊆ ℝ ↔ ∀𝑘 ∈ (1...𝑁)(𝐴𝐹𝐵) ∈ ℝ)
318, 30bitri 276 . . 3 (ran (𝑘 ∈ (1...𝑁) ↦ (𝐴𝐹𝐵)) ⊆ ℝ ↔ ∀𝑘 ∈ (1...𝑁)(𝐴𝐹𝐵) ∈ ℝ)
326, 31bitri 276 . 2 ((𝑘 ∈ (1...𝑁) ↦ (𝐴𝐹𝐵)):(1...𝑁)⟶ℝ ↔ ∀𝑘 ∈ (1...𝑁)(𝐴𝐹𝐵) ∈ ℝ)
331, 32syl6bb 288 1 (𝑁 ∈ ℕ → ((𝑘 ∈ (1...𝑁) ↦ (𝐴𝐹𝐵)) ∈ (𝔼‘𝑁) ↔ ∀𝑘 ∈ (1...𝑁)(𝐴𝐹𝐵) ∈ ℝ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wal 1528   = wceq 1530  wcel 2107  {cab 2804  wral 3143  wrex 3144  wss 3940  cmpt 5143  ran crn 5555   Fn wfn 6349  wf 6350  cfv 6354  (class class class)co 7150  cr 10530  1c1 10532  cn 11632  ...cfz 12887  𝔼cee 26607
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2798  ax-sep 5200  ax-nul 5207  ax-pow 5263  ax-pr 5326  ax-un 7455  ax-cnex 10587  ax-resscn 10588
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2620  df-eu 2652  df-clab 2805  df-cleq 2819  df-clel 2898  df-nfc 2968  df-ral 3148  df-rex 3149  df-rab 3152  df-v 3502  df-sbc 3777  df-dif 3943  df-un 3945  df-in 3947  df-ss 3956  df-nul 4296  df-if 4471  df-pw 4544  df-sn 4565  df-pr 4567  df-op 4571  df-uni 4838  df-br 5064  df-opab 5126  df-mpt 5144  df-id 5459  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-iota 6313  df-fun 6356  df-fn 6357  df-f 6358  df-fv 6362  df-ov 7153  df-oprab 7154  df-mpo 7155  df-map 8403  df-ee 26610
This theorem is referenced by:  eleesub  26630  eleesubd  26631  axsegconlem1  26636  axsegconlem8  26643  axpasch  26660  axeuclidlem  26681  axcontlem2  26684
  Copyright terms: Public domain W3C validator