MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mptelee Structured version   Visualization version   GIF version

Theorem mptelee 28762
Description: A condition for a mapping to be an element of a Euclidean space. (Contributed by Scott Fenton, 7-Jun-2013.)
Assertion
Ref Expression
mptelee (𝑁 ∈ β„• β†’ ((π‘˜ ∈ (1...𝑁) ↦ (𝐴𝐹𝐡)) ∈ (π”Όβ€˜π‘) ↔ βˆ€π‘˜ ∈ (1...𝑁)(𝐴𝐹𝐡) ∈ ℝ))
Distinct variable group:   π‘˜,𝑁
Allowed substitution hints:   𝐴(π‘˜)   𝐡(π‘˜)   𝐹(π‘˜)

Proof of Theorem mptelee
Dummy variable π‘Ž is distinct from all other variables.
StepHypRef Expression
1 elee 28761 . 2 (𝑁 ∈ β„• β†’ ((π‘˜ ∈ (1...𝑁) ↦ (𝐴𝐹𝐡)) ∈ (π”Όβ€˜π‘) ↔ (π‘˜ ∈ (1...𝑁) ↦ (𝐴𝐹𝐡)):(1...𝑁)βŸΆβ„))
2 ovex 7450 . . . . 5 (𝐴𝐹𝐡) ∈ V
3 eqid 2725 . . . . 5 (π‘˜ ∈ (1...𝑁) ↦ (𝐴𝐹𝐡)) = (π‘˜ ∈ (1...𝑁) ↦ (𝐴𝐹𝐡))
42, 3fnmpti 6697 . . . 4 (π‘˜ ∈ (1...𝑁) ↦ (𝐴𝐹𝐡)) Fn (1...𝑁)
5 df-f 6551 . . . 4 ((π‘˜ ∈ (1...𝑁) ↦ (𝐴𝐹𝐡)):(1...𝑁)βŸΆβ„ ↔ ((π‘˜ ∈ (1...𝑁) ↦ (𝐴𝐹𝐡)) Fn (1...𝑁) ∧ ran (π‘˜ ∈ (1...𝑁) ↦ (𝐴𝐹𝐡)) βŠ† ℝ))
64, 5mpbiran 707 . . 3 ((π‘˜ ∈ (1...𝑁) ↦ (𝐴𝐹𝐡)):(1...𝑁)βŸΆβ„ ↔ ran (π‘˜ ∈ (1...𝑁) ↦ (𝐴𝐹𝐡)) βŠ† ℝ)
73rnmpt 5956 . . . . 5 ran (π‘˜ ∈ (1...𝑁) ↦ (𝐴𝐹𝐡)) = {π‘Ž ∣ βˆƒπ‘˜ ∈ (1...𝑁)π‘Ž = (𝐴𝐹𝐡)}
87sseq1i 4006 . . . 4 (ran (π‘˜ ∈ (1...𝑁) ↦ (𝐴𝐹𝐡)) βŠ† ℝ ↔ {π‘Ž ∣ βˆƒπ‘˜ ∈ (1...𝑁)π‘Ž = (𝐴𝐹𝐡)} βŠ† ℝ)
9 abss 4055 . . . . 5 ({π‘Ž ∣ βˆƒπ‘˜ ∈ (1...𝑁)π‘Ž = (𝐴𝐹𝐡)} βŠ† ℝ ↔ βˆ€π‘Ž(βˆƒπ‘˜ ∈ (1...𝑁)π‘Ž = (𝐴𝐹𝐡) β†’ π‘Ž ∈ ℝ))
10 nfre1 3273 . . . . . . . . 9 β„²π‘˜βˆƒπ‘˜ ∈ (1...𝑁)π‘Ž = (𝐴𝐹𝐡)
11 nfv 1909 . . . . . . . . 9 β„²π‘˜ π‘Ž ∈ ℝ
1210, 11nfim 1891 . . . . . . . 8 β„²π‘˜(βˆƒπ‘˜ ∈ (1...𝑁)π‘Ž = (𝐴𝐹𝐡) β†’ π‘Ž ∈ ℝ)
1312nfal 2311 . . . . . . 7 β„²π‘˜βˆ€π‘Ž(βˆƒπ‘˜ ∈ (1...𝑁)π‘Ž = (𝐴𝐹𝐡) β†’ π‘Ž ∈ ℝ)
14 r19.23v 3173 . . . . . . . . 9 (βˆ€π‘˜ ∈ (1...𝑁)(π‘Ž = (𝐴𝐹𝐡) β†’ π‘Ž ∈ ℝ) ↔ (βˆƒπ‘˜ ∈ (1...𝑁)π‘Ž = (𝐴𝐹𝐡) β†’ π‘Ž ∈ ℝ))
1514albii 1813 . . . . . . . 8 (βˆ€π‘Žβˆ€π‘˜ ∈ (1...𝑁)(π‘Ž = (𝐴𝐹𝐡) β†’ π‘Ž ∈ ℝ) ↔ βˆ€π‘Ž(βˆƒπ‘˜ ∈ (1...𝑁)π‘Ž = (𝐴𝐹𝐡) β†’ π‘Ž ∈ ℝ))
16 ralcom4 3274 . . . . . . . . 9 (βˆ€π‘˜ ∈ (1...𝑁)βˆ€π‘Ž(π‘Ž = (𝐴𝐹𝐡) β†’ π‘Ž ∈ ℝ) ↔ βˆ€π‘Žβˆ€π‘˜ ∈ (1...𝑁)(π‘Ž = (𝐴𝐹𝐡) β†’ π‘Ž ∈ ℝ))
17 rsp 3235 . . . . . . . . . 10 (βˆ€π‘˜ ∈ (1...𝑁)βˆ€π‘Ž(π‘Ž = (𝐴𝐹𝐡) β†’ π‘Ž ∈ ℝ) β†’ (π‘˜ ∈ (1...𝑁) β†’ βˆ€π‘Ž(π‘Ž = (𝐴𝐹𝐡) β†’ π‘Ž ∈ ℝ)))
182clel2 3645 . . . . . . . . . 10 ((𝐴𝐹𝐡) ∈ ℝ ↔ βˆ€π‘Ž(π‘Ž = (𝐴𝐹𝐡) β†’ π‘Ž ∈ ℝ))
1917, 18imbitrrdi 251 . . . . . . . . 9 (βˆ€π‘˜ ∈ (1...𝑁)βˆ€π‘Ž(π‘Ž = (𝐴𝐹𝐡) β†’ π‘Ž ∈ ℝ) β†’ (π‘˜ ∈ (1...𝑁) β†’ (𝐴𝐹𝐡) ∈ ℝ))
2016, 19sylbir 234 . . . . . . . 8 (βˆ€π‘Žβˆ€π‘˜ ∈ (1...𝑁)(π‘Ž = (𝐴𝐹𝐡) β†’ π‘Ž ∈ ℝ) β†’ (π‘˜ ∈ (1...𝑁) β†’ (𝐴𝐹𝐡) ∈ ℝ))
2115, 20sylbir 234 . . . . . . 7 (βˆ€π‘Ž(βˆƒπ‘˜ ∈ (1...𝑁)π‘Ž = (𝐴𝐹𝐡) β†’ π‘Ž ∈ ℝ) β†’ (π‘˜ ∈ (1...𝑁) β†’ (𝐴𝐹𝐡) ∈ ℝ))
2213, 21ralrimi 3245 . . . . . 6 (βˆ€π‘Ž(βˆƒπ‘˜ ∈ (1...𝑁)π‘Ž = (𝐴𝐹𝐡) β†’ π‘Ž ∈ ℝ) β†’ βˆ€π‘˜ ∈ (1...𝑁)(𝐴𝐹𝐡) ∈ ℝ)
23 nfra1 3272 . . . . . . . 8 β„²π‘˜βˆ€π‘˜ ∈ (1...𝑁)(𝐴𝐹𝐡) ∈ ℝ
24 rsp 3235 . . . . . . . . 9 (βˆ€π‘˜ ∈ (1...𝑁)(𝐴𝐹𝐡) ∈ ℝ β†’ (π‘˜ ∈ (1...𝑁) β†’ (𝐴𝐹𝐡) ∈ ℝ))
25 eleq1a 2820 . . . . . . . . 9 ((𝐴𝐹𝐡) ∈ ℝ β†’ (π‘Ž = (𝐴𝐹𝐡) β†’ π‘Ž ∈ ℝ))
2624, 25syl6 35 . . . . . . . 8 (βˆ€π‘˜ ∈ (1...𝑁)(𝐴𝐹𝐡) ∈ ℝ β†’ (π‘˜ ∈ (1...𝑁) β†’ (π‘Ž = (𝐴𝐹𝐡) β†’ π‘Ž ∈ ℝ)))
2723, 11, 26rexlimd 3254 . . . . . . 7 (βˆ€π‘˜ ∈ (1...𝑁)(𝐴𝐹𝐡) ∈ ℝ β†’ (βˆƒπ‘˜ ∈ (1...𝑁)π‘Ž = (𝐴𝐹𝐡) β†’ π‘Ž ∈ ℝ))
2827alrimiv 1922 . . . . . 6 (βˆ€π‘˜ ∈ (1...𝑁)(𝐴𝐹𝐡) ∈ ℝ β†’ βˆ€π‘Ž(βˆƒπ‘˜ ∈ (1...𝑁)π‘Ž = (𝐴𝐹𝐡) β†’ π‘Ž ∈ ℝ))
2922, 28impbii 208 . . . . 5 (βˆ€π‘Ž(βˆƒπ‘˜ ∈ (1...𝑁)π‘Ž = (𝐴𝐹𝐡) β†’ π‘Ž ∈ ℝ) ↔ βˆ€π‘˜ ∈ (1...𝑁)(𝐴𝐹𝐡) ∈ ℝ)
309, 29bitri 274 . . . 4 ({π‘Ž ∣ βˆƒπ‘˜ ∈ (1...𝑁)π‘Ž = (𝐴𝐹𝐡)} βŠ† ℝ ↔ βˆ€π‘˜ ∈ (1...𝑁)(𝐴𝐹𝐡) ∈ ℝ)
318, 30bitri 274 . . 3 (ran (π‘˜ ∈ (1...𝑁) ↦ (𝐴𝐹𝐡)) βŠ† ℝ ↔ βˆ€π‘˜ ∈ (1...𝑁)(𝐴𝐹𝐡) ∈ ℝ)
326, 31bitri 274 . 2 ((π‘˜ ∈ (1...𝑁) ↦ (𝐴𝐹𝐡)):(1...𝑁)βŸΆβ„ ↔ βˆ€π‘˜ ∈ (1...𝑁)(𝐴𝐹𝐡) ∈ ℝ)
331, 32bitrdi 286 1 (𝑁 ∈ β„• β†’ ((π‘˜ ∈ (1...𝑁) ↦ (𝐴𝐹𝐡)) ∈ (π”Όβ€˜π‘) ↔ βˆ€π‘˜ ∈ (1...𝑁)(𝐴𝐹𝐡) ∈ ℝ))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205  βˆ€wal 1531   = wceq 1533   ∈ wcel 2098  {cab 2702  βˆ€wral 3051  βˆƒwrex 3060   βŠ† wss 3945   ↦ cmpt 5231  ran crn 5678   Fn wfn 6542  βŸΆwf 6543  β€˜cfv 6547  (class class class)co 7417  β„cr 11137  1c1 11139  β„•cn 12242  ...cfz 13516  π”Όcee 28755
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-sep 5299  ax-nul 5306  ax-pow 5364  ax-pr 5428  ax-un 7739  ax-cnex 11194  ax-resscn 11195
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2931  df-ral 3052  df-rex 3061  df-rab 3420  df-v 3465  df-sbc 3775  df-dif 3948  df-un 3950  df-in 3952  df-ss 3962  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4909  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5575  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-iota 6499  df-fun 6549  df-fn 6550  df-f 6551  df-fv 6555  df-ov 7420  df-oprab 7421  df-mpo 7422  df-map 8845  df-ee 28758
This theorem is referenced by:  eleesub  28778  eleesubd  28779  axsegconlem1  28784  axsegconlem8  28791  axpasch  28808  axeuclidlem  28829  axcontlem2  28832
  Copyright terms: Public domain W3C validator