MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mptelee Structured version   Visualization version   GIF version

Theorem mptelee 28928
Description: A condition for a mapping to be an element of a Euclidean space. (Contributed by Scott Fenton, 7-Jun-2013.)
Assertion
Ref Expression
mptelee (𝑁 ∈ ℕ → ((𝑘 ∈ (1...𝑁) ↦ (𝐴𝐹𝐵)) ∈ (𝔼‘𝑁) ↔ ∀𝑘 ∈ (1...𝑁)(𝐴𝐹𝐵) ∈ ℝ))
Distinct variable group:   𝑘,𝑁
Allowed substitution hints:   𝐴(𝑘)   𝐵(𝑘)   𝐹(𝑘)

Proof of Theorem mptelee
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 elee 28927 . 2 (𝑁 ∈ ℕ → ((𝑘 ∈ (1...𝑁) ↦ (𝐴𝐹𝐵)) ∈ (𝔼‘𝑁) ↔ (𝑘 ∈ (1...𝑁) ↦ (𝐴𝐹𝐵)):(1...𝑁)⟶ℝ))
2 ovex 7481 . . . . 5 (𝐴𝐹𝐵) ∈ V
3 eqid 2740 . . . . 5 (𝑘 ∈ (1...𝑁) ↦ (𝐴𝐹𝐵)) = (𝑘 ∈ (1...𝑁) ↦ (𝐴𝐹𝐵))
42, 3fnmpti 6723 . . . 4 (𝑘 ∈ (1...𝑁) ↦ (𝐴𝐹𝐵)) Fn (1...𝑁)
5 df-f 6577 . . . 4 ((𝑘 ∈ (1...𝑁) ↦ (𝐴𝐹𝐵)):(1...𝑁)⟶ℝ ↔ ((𝑘 ∈ (1...𝑁) ↦ (𝐴𝐹𝐵)) Fn (1...𝑁) ∧ ran (𝑘 ∈ (1...𝑁) ↦ (𝐴𝐹𝐵)) ⊆ ℝ))
64, 5mpbiran 708 . . 3 ((𝑘 ∈ (1...𝑁) ↦ (𝐴𝐹𝐵)):(1...𝑁)⟶ℝ ↔ ran (𝑘 ∈ (1...𝑁) ↦ (𝐴𝐹𝐵)) ⊆ ℝ)
73rnmpt 5980 . . . . 5 ran (𝑘 ∈ (1...𝑁) ↦ (𝐴𝐹𝐵)) = {𝑎 ∣ ∃𝑘 ∈ (1...𝑁)𝑎 = (𝐴𝐹𝐵)}
87sseq1i 4037 . . . 4 (ran (𝑘 ∈ (1...𝑁) ↦ (𝐴𝐹𝐵)) ⊆ ℝ ↔ {𝑎 ∣ ∃𝑘 ∈ (1...𝑁)𝑎 = (𝐴𝐹𝐵)} ⊆ ℝ)
9 abss 4086 . . . . 5 ({𝑎 ∣ ∃𝑘 ∈ (1...𝑁)𝑎 = (𝐴𝐹𝐵)} ⊆ ℝ ↔ ∀𝑎(∃𝑘 ∈ (1...𝑁)𝑎 = (𝐴𝐹𝐵) → 𝑎 ∈ ℝ))
10 nfre1 3291 . . . . . . . . 9 𝑘𝑘 ∈ (1...𝑁)𝑎 = (𝐴𝐹𝐵)
11 nfv 1913 . . . . . . . . 9 𝑘 𝑎 ∈ ℝ
1210, 11nfim 1895 . . . . . . . 8 𝑘(∃𝑘 ∈ (1...𝑁)𝑎 = (𝐴𝐹𝐵) → 𝑎 ∈ ℝ)
1312nfal 2327 . . . . . . 7 𝑘𝑎(∃𝑘 ∈ (1...𝑁)𝑎 = (𝐴𝐹𝐵) → 𝑎 ∈ ℝ)
14 r19.23v 3189 . . . . . . . . 9 (∀𝑘 ∈ (1...𝑁)(𝑎 = (𝐴𝐹𝐵) → 𝑎 ∈ ℝ) ↔ (∃𝑘 ∈ (1...𝑁)𝑎 = (𝐴𝐹𝐵) → 𝑎 ∈ ℝ))
1514albii 1817 . . . . . . . 8 (∀𝑎𝑘 ∈ (1...𝑁)(𝑎 = (𝐴𝐹𝐵) → 𝑎 ∈ ℝ) ↔ ∀𝑎(∃𝑘 ∈ (1...𝑁)𝑎 = (𝐴𝐹𝐵) → 𝑎 ∈ ℝ))
16 ralcom4 3292 . . . . . . . . 9 (∀𝑘 ∈ (1...𝑁)∀𝑎(𝑎 = (𝐴𝐹𝐵) → 𝑎 ∈ ℝ) ↔ ∀𝑎𝑘 ∈ (1...𝑁)(𝑎 = (𝐴𝐹𝐵) → 𝑎 ∈ ℝ))
17 rsp 3253 . . . . . . . . . 10 (∀𝑘 ∈ (1...𝑁)∀𝑎(𝑎 = (𝐴𝐹𝐵) → 𝑎 ∈ ℝ) → (𝑘 ∈ (1...𝑁) → ∀𝑎(𝑎 = (𝐴𝐹𝐵) → 𝑎 ∈ ℝ)))
182clel2 3673 . . . . . . . . . 10 ((𝐴𝐹𝐵) ∈ ℝ ↔ ∀𝑎(𝑎 = (𝐴𝐹𝐵) → 𝑎 ∈ ℝ))
1917, 18imbitrrdi 252 . . . . . . . . 9 (∀𝑘 ∈ (1...𝑁)∀𝑎(𝑎 = (𝐴𝐹𝐵) → 𝑎 ∈ ℝ) → (𝑘 ∈ (1...𝑁) → (𝐴𝐹𝐵) ∈ ℝ))
2016, 19sylbir 235 . . . . . . . 8 (∀𝑎𝑘 ∈ (1...𝑁)(𝑎 = (𝐴𝐹𝐵) → 𝑎 ∈ ℝ) → (𝑘 ∈ (1...𝑁) → (𝐴𝐹𝐵) ∈ ℝ))
2115, 20sylbir 235 . . . . . . 7 (∀𝑎(∃𝑘 ∈ (1...𝑁)𝑎 = (𝐴𝐹𝐵) → 𝑎 ∈ ℝ) → (𝑘 ∈ (1...𝑁) → (𝐴𝐹𝐵) ∈ ℝ))
2213, 21ralrimi 3263 . . . . . 6 (∀𝑎(∃𝑘 ∈ (1...𝑁)𝑎 = (𝐴𝐹𝐵) → 𝑎 ∈ ℝ) → ∀𝑘 ∈ (1...𝑁)(𝐴𝐹𝐵) ∈ ℝ)
23 nfra1 3290 . . . . . . . 8 𝑘𝑘 ∈ (1...𝑁)(𝐴𝐹𝐵) ∈ ℝ
24 rsp 3253 . . . . . . . . 9 (∀𝑘 ∈ (1...𝑁)(𝐴𝐹𝐵) ∈ ℝ → (𝑘 ∈ (1...𝑁) → (𝐴𝐹𝐵) ∈ ℝ))
25 eleq1a 2839 . . . . . . . . 9 ((𝐴𝐹𝐵) ∈ ℝ → (𝑎 = (𝐴𝐹𝐵) → 𝑎 ∈ ℝ))
2624, 25syl6 35 . . . . . . . 8 (∀𝑘 ∈ (1...𝑁)(𝐴𝐹𝐵) ∈ ℝ → (𝑘 ∈ (1...𝑁) → (𝑎 = (𝐴𝐹𝐵) → 𝑎 ∈ ℝ)))
2723, 11, 26rexlimd 3272 . . . . . . 7 (∀𝑘 ∈ (1...𝑁)(𝐴𝐹𝐵) ∈ ℝ → (∃𝑘 ∈ (1...𝑁)𝑎 = (𝐴𝐹𝐵) → 𝑎 ∈ ℝ))
2827alrimiv 1926 . . . . . 6 (∀𝑘 ∈ (1...𝑁)(𝐴𝐹𝐵) ∈ ℝ → ∀𝑎(∃𝑘 ∈ (1...𝑁)𝑎 = (𝐴𝐹𝐵) → 𝑎 ∈ ℝ))
2922, 28impbii 209 . . . . 5 (∀𝑎(∃𝑘 ∈ (1...𝑁)𝑎 = (𝐴𝐹𝐵) → 𝑎 ∈ ℝ) ↔ ∀𝑘 ∈ (1...𝑁)(𝐴𝐹𝐵) ∈ ℝ)
309, 29bitri 275 . . . 4 ({𝑎 ∣ ∃𝑘 ∈ (1...𝑁)𝑎 = (𝐴𝐹𝐵)} ⊆ ℝ ↔ ∀𝑘 ∈ (1...𝑁)(𝐴𝐹𝐵) ∈ ℝ)
318, 30bitri 275 . . 3 (ran (𝑘 ∈ (1...𝑁) ↦ (𝐴𝐹𝐵)) ⊆ ℝ ↔ ∀𝑘 ∈ (1...𝑁)(𝐴𝐹𝐵) ∈ ℝ)
326, 31bitri 275 . 2 ((𝑘 ∈ (1...𝑁) ↦ (𝐴𝐹𝐵)):(1...𝑁)⟶ℝ ↔ ∀𝑘 ∈ (1...𝑁)(𝐴𝐹𝐵) ∈ ℝ)
331, 32bitrdi 287 1 (𝑁 ∈ ℕ → ((𝑘 ∈ (1...𝑁) ↦ (𝐴𝐹𝐵)) ∈ (𝔼‘𝑁) ↔ ∀𝑘 ∈ (1...𝑁)(𝐴𝐹𝐵) ∈ ℝ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wal 1535   = wceq 1537  wcel 2108  {cab 2717  wral 3067  wrex 3076  wss 3976  cmpt 5249  ran crn 5701   Fn wfn 6568  wf 6569  cfv 6573  (class class class)co 7448  cr 11183  1c1 11185  cn 12293  ...cfz 13567  𝔼cee 28921
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-sbc 3805  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-map 8886  df-ee 28924
This theorem is referenced by:  eleesub  28944  eleesubd  28945  axsegconlem1  28950  axsegconlem8  28957  axpasch  28974  axeuclidlem  28995  axcontlem2  28998
  Copyright terms: Public domain W3C validator