MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mptelee Structured version   Visualization version   GIF version

Theorem mptelee 28693
Description: A condition for a mapping to be an element of a Euclidean space. (Contributed by Scott Fenton, 7-Jun-2013.)
Assertion
Ref Expression
mptelee (𝑁 ∈ β„• β†’ ((π‘˜ ∈ (1...𝑁) ↦ (𝐴𝐹𝐡)) ∈ (π”Όβ€˜π‘) ↔ βˆ€π‘˜ ∈ (1...𝑁)(𝐴𝐹𝐡) ∈ ℝ))
Distinct variable group:   π‘˜,𝑁
Allowed substitution hints:   𝐴(π‘˜)   𝐡(π‘˜)   𝐹(π‘˜)

Proof of Theorem mptelee
Dummy variable π‘Ž is distinct from all other variables.
StepHypRef Expression
1 elee 28692 . 2 (𝑁 ∈ β„• β†’ ((π‘˜ ∈ (1...𝑁) ↦ (𝐴𝐹𝐡)) ∈ (π”Όβ€˜π‘) ↔ (π‘˜ ∈ (1...𝑁) ↦ (𝐴𝐹𝐡)):(1...𝑁)βŸΆβ„))
2 ovex 7447 . . . . 5 (𝐴𝐹𝐡) ∈ V
3 eqid 2727 . . . . 5 (π‘˜ ∈ (1...𝑁) ↦ (𝐴𝐹𝐡)) = (π‘˜ ∈ (1...𝑁) ↦ (𝐴𝐹𝐡))
42, 3fnmpti 6692 . . . 4 (π‘˜ ∈ (1...𝑁) ↦ (𝐴𝐹𝐡)) Fn (1...𝑁)
5 df-f 6546 . . . 4 ((π‘˜ ∈ (1...𝑁) ↦ (𝐴𝐹𝐡)):(1...𝑁)βŸΆβ„ ↔ ((π‘˜ ∈ (1...𝑁) ↦ (𝐴𝐹𝐡)) Fn (1...𝑁) ∧ ran (π‘˜ ∈ (1...𝑁) ↦ (𝐴𝐹𝐡)) βŠ† ℝ))
64, 5mpbiran 708 . . 3 ((π‘˜ ∈ (1...𝑁) ↦ (𝐴𝐹𝐡)):(1...𝑁)βŸΆβ„ ↔ ran (π‘˜ ∈ (1...𝑁) ↦ (𝐴𝐹𝐡)) βŠ† ℝ)
73rnmpt 5951 . . . . 5 ran (π‘˜ ∈ (1...𝑁) ↦ (𝐴𝐹𝐡)) = {π‘Ž ∣ βˆƒπ‘˜ ∈ (1...𝑁)π‘Ž = (𝐴𝐹𝐡)}
87sseq1i 4006 . . . 4 (ran (π‘˜ ∈ (1...𝑁) ↦ (𝐴𝐹𝐡)) βŠ† ℝ ↔ {π‘Ž ∣ βˆƒπ‘˜ ∈ (1...𝑁)π‘Ž = (𝐴𝐹𝐡)} βŠ† ℝ)
9 abss 4053 . . . . 5 ({π‘Ž ∣ βˆƒπ‘˜ ∈ (1...𝑁)π‘Ž = (𝐴𝐹𝐡)} βŠ† ℝ ↔ βˆ€π‘Ž(βˆƒπ‘˜ ∈ (1...𝑁)π‘Ž = (𝐴𝐹𝐡) β†’ π‘Ž ∈ ℝ))
10 nfre1 3277 . . . . . . . . 9 β„²π‘˜βˆƒπ‘˜ ∈ (1...𝑁)π‘Ž = (𝐴𝐹𝐡)
11 nfv 1910 . . . . . . . . 9 β„²π‘˜ π‘Ž ∈ ℝ
1210, 11nfim 1892 . . . . . . . 8 β„²π‘˜(βˆƒπ‘˜ ∈ (1...𝑁)π‘Ž = (𝐴𝐹𝐡) β†’ π‘Ž ∈ ℝ)
1312nfal 2311 . . . . . . 7 β„²π‘˜βˆ€π‘Ž(βˆƒπ‘˜ ∈ (1...𝑁)π‘Ž = (𝐴𝐹𝐡) β†’ π‘Ž ∈ ℝ)
14 r19.23v 3177 . . . . . . . . 9 (βˆ€π‘˜ ∈ (1...𝑁)(π‘Ž = (𝐴𝐹𝐡) β†’ π‘Ž ∈ ℝ) ↔ (βˆƒπ‘˜ ∈ (1...𝑁)π‘Ž = (𝐴𝐹𝐡) β†’ π‘Ž ∈ ℝ))
1514albii 1814 . . . . . . . 8 (βˆ€π‘Žβˆ€π‘˜ ∈ (1...𝑁)(π‘Ž = (𝐴𝐹𝐡) β†’ π‘Ž ∈ ℝ) ↔ βˆ€π‘Ž(βˆƒπ‘˜ ∈ (1...𝑁)π‘Ž = (𝐴𝐹𝐡) β†’ π‘Ž ∈ ℝ))
16 ralcom4 3278 . . . . . . . . 9 (βˆ€π‘˜ ∈ (1...𝑁)βˆ€π‘Ž(π‘Ž = (𝐴𝐹𝐡) β†’ π‘Ž ∈ ℝ) ↔ βˆ€π‘Žβˆ€π‘˜ ∈ (1...𝑁)(π‘Ž = (𝐴𝐹𝐡) β†’ π‘Ž ∈ ℝ))
17 rsp 3239 . . . . . . . . . 10 (βˆ€π‘˜ ∈ (1...𝑁)βˆ€π‘Ž(π‘Ž = (𝐴𝐹𝐡) β†’ π‘Ž ∈ ℝ) β†’ (π‘˜ ∈ (1...𝑁) β†’ βˆ€π‘Ž(π‘Ž = (𝐴𝐹𝐡) β†’ π‘Ž ∈ ℝ)))
182clel2 3645 . . . . . . . . . 10 ((𝐴𝐹𝐡) ∈ ℝ ↔ βˆ€π‘Ž(π‘Ž = (𝐴𝐹𝐡) β†’ π‘Ž ∈ ℝ))
1917, 18imbitrrdi 251 . . . . . . . . 9 (βˆ€π‘˜ ∈ (1...𝑁)βˆ€π‘Ž(π‘Ž = (𝐴𝐹𝐡) β†’ π‘Ž ∈ ℝ) β†’ (π‘˜ ∈ (1...𝑁) β†’ (𝐴𝐹𝐡) ∈ ℝ))
2016, 19sylbir 234 . . . . . . . 8 (βˆ€π‘Žβˆ€π‘˜ ∈ (1...𝑁)(π‘Ž = (𝐴𝐹𝐡) β†’ π‘Ž ∈ ℝ) β†’ (π‘˜ ∈ (1...𝑁) β†’ (𝐴𝐹𝐡) ∈ ℝ))
2115, 20sylbir 234 . . . . . . 7 (βˆ€π‘Ž(βˆƒπ‘˜ ∈ (1...𝑁)π‘Ž = (𝐴𝐹𝐡) β†’ π‘Ž ∈ ℝ) β†’ (π‘˜ ∈ (1...𝑁) β†’ (𝐴𝐹𝐡) ∈ ℝ))
2213, 21ralrimi 3249 . . . . . 6 (βˆ€π‘Ž(βˆƒπ‘˜ ∈ (1...𝑁)π‘Ž = (𝐴𝐹𝐡) β†’ π‘Ž ∈ ℝ) β†’ βˆ€π‘˜ ∈ (1...𝑁)(𝐴𝐹𝐡) ∈ ℝ)
23 nfra1 3276 . . . . . . . 8 β„²π‘˜βˆ€π‘˜ ∈ (1...𝑁)(𝐴𝐹𝐡) ∈ ℝ
24 rsp 3239 . . . . . . . . 9 (βˆ€π‘˜ ∈ (1...𝑁)(𝐴𝐹𝐡) ∈ ℝ β†’ (π‘˜ ∈ (1...𝑁) β†’ (𝐴𝐹𝐡) ∈ ℝ))
25 eleq1a 2823 . . . . . . . . 9 ((𝐴𝐹𝐡) ∈ ℝ β†’ (π‘Ž = (𝐴𝐹𝐡) β†’ π‘Ž ∈ ℝ))
2624, 25syl6 35 . . . . . . . 8 (βˆ€π‘˜ ∈ (1...𝑁)(𝐴𝐹𝐡) ∈ ℝ β†’ (π‘˜ ∈ (1...𝑁) β†’ (π‘Ž = (𝐴𝐹𝐡) β†’ π‘Ž ∈ ℝ)))
2723, 11, 26rexlimd 3258 . . . . . . 7 (βˆ€π‘˜ ∈ (1...𝑁)(𝐴𝐹𝐡) ∈ ℝ β†’ (βˆƒπ‘˜ ∈ (1...𝑁)π‘Ž = (𝐴𝐹𝐡) β†’ π‘Ž ∈ ℝ))
2827alrimiv 1923 . . . . . 6 (βˆ€π‘˜ ∈ (1...𝑁)(𝐴𝐹𝐡) ∈ ℝ β†’ βˆ€π‘Ž(βˆƒπ‘˜ ∈ (1...𝑁)π‘Ž = (𝐴𝐹𝐡) β†’ π‘Ž ∈ ℝ))
2922, 28impbii 208 . . . . 5 (βˆ€π‘Ž(βˆƒπ‘˜ ∈ (1...𝑁)π‘Ž = (𝐴𝐹𝐡) β†’ π‘Ž ∈ ℝ) ↔ βˆ€π‘˜ ∈ (1...𝑁)(𝐴𝐹𝐡) ∈ ℝ)
309, 29bitri 275 . . . 4 ({π‘Ž ∣ βˆƒπ‘˜ ∈ (1...𝑁)π‘Ž = (𝐴𝐹𝐡)} βŠ† ℝ ↔ βˆ€π‘˜ ∈ (1...𝑁)(𝐴𝐹𝐡) ∈ ℝ)
318, 30bitri 275 . . 3 (ran (π‘˜ ∈ (1...𝑁) ↦ (𝐴𝐹𝐡)) βŠ† ℝ ↔ βˆ€π‘˜ ∈ (1...𝑁)(𝐴𝐹𝐡) ∈ ℝ)
326, 31bitri 275 . 2 ((π‘˜ ∈ (1...𝑁) ↦ (𝐴𝐹𝐡)):(1...𝑁)βŸΆβ„ ↔ βˆ€π‘˜ ∈ (1...𝑁)(𝐴𝐹𝐡) ∈ ℝ)
331, 32bitrdi 287 1 (𝑁 ∈ β„• β†’ ((π‘˜ ∈ (1...𝑁) ↦ (𝐴𝐹𝐡)) ∈ (π”Όβ€˜π‘) ↔ βˆ€π‘˜ ∈ (1...𝑁)(𝐴𝐹𝐡) ∈ ℝ))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205  βˆ€wal 1532   = wceq 1534   ∈ wcel 2099  {cab 2704  βˆ€wral 3056  βˆƒwrex 3065   βŠ† wss 3944   ↦ cmpt 5225  ran crn 5673   Fn wfn 6537  βŸΆwf 6538  β€˜cfv 6542  (class class class)co 7414  β„cr 11129  1c1 11131  β„•cn 12234  ...cfz 13508  π”Όcee 28686
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2164  ax-ext 2698  ax-sep 5293  ax-nul 5300  ax-pow 5359  ax-pr 5423  ax-un 7734  ax-cnex 11186  ax-resscn 11187
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ne 2936  df-ral 3057  df-rex 3066  df-rab 3428  df-v 3471  df-sbc 3775  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-br 5143  df-opab 5205  df-mpt 5226  df-id 5570  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-fv 6550  df-ov 7417  df-oprab 7418  df-mpo 7419  df-map 8838  df-ee 28689
This theorem is referenced by:  eleesub  28709  eleesubd  28710  axsegconlem1  28715  axsegconlem8  28722  axpasch  28739  axeuclidlem  28760  axcontlem2  28763
  Copyright terms: Public domain W3C validator