Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > clelsb2 | Structured version Visualization version GIF version |
Description: Substitution for the second argument of the membership predicate in an atomic formula (class version of elsb2 2127). (Contributed by Jim Kingdon, 22-Nov-2018.) Reduce dependencies on axioms. (Revised by Wolf Lammen, 24-Nov-2024.) |
Ref | Expression |
---|---|
clelsb2 | ⊢ ([𝑦 / 𝑥]𝐴 ∈ 𝑥 ↔ 𝐴 ∈ 𝑦) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq2w 2824 | . 2 ⊢ (𝑥 = 𝑧 → (𝐴 ∈ 𝑥 ↔ 𝐴 ∈ 𝑧)) | |
2 | eleq2w 2824 | . 2 ⊢ (𝑧 = 𝑦 → (𝐴 ∈ 𝑧 ↔ 𝐴 ∈ 𝑦)) | |
3 | 1, 2 | sbievw2 2103 | 1 ⊢ ([𝑦 / 𝑥]𝐴 ∈ 𝑥 ↔ 𝐴 ∈ 𝑦) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 [wsb 2071 ∈ wcel 2110 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 |
This theorem depends on definitions: df-bi 206 df-an 397 df-ex 1787 df-sb 2072 df-clel 2818 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |