MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  clelsb2 Structured version   Visualization version   GIF version

Theorem clelsb2 2859
Description: Substitution for the second argument of the membership predicate in an atomic formula (class version of elsb2 2128). (Contributed by Jim Kingdon, 22-Nov-2018.) Reduce dependencies on axioms. (Revised by Wolf Lammen, 24-Nov-2024.)
Assertion
Ref Expression
clelsb2 ([𝑦 / 𝑥]𝐴𝑥𝐴𝑦)
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝐴(𝑦)

Proof of Theorem clelsb2
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 eleq2w 2815 . 2 (𝑥 = 𝑧 → (𝐴𝑥𝐴𝑧))
2 eleq2w 2815 . 2 (𝑧 = 𝑦 → (𝐴𝑧𝐴𝑦))
31, 2sbievw2 2101 1 ([𝑦 / 𝑥]𝐴𝑥𝐴𝑦)
Colors of variables: wff setvar class
Syntax hints:  wb 206  [wsb 2067  wcel 2111
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1781  df-sb 2068  df-clel 2806
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator