MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  clelsb2 Structured version   Visualization version   GIF version

Theorem clelsb2 2867
Description: Substitution for the second argument of the membership predicate in an atomic formula (class version of elsb2 2123). (Contributed by Jim Kingdon, 22-Nov-2018.) Reduce dependencies on axioms. (Revised by Wolf Lammen, 24-Nov-2024.)
Assertion
Ref Expression
clelsb2 ([𝑦 / 𝑥]𝐴𝑥𝐴𝑦)
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝐴(𝑦)

Proof of Theorem clelsb2
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 eleq2w 2822 . 2 (𝑥 = 𝑧 → (𝐴𝑥𝐴𝑧))
2 eleq2w 2822 . 2 (𝑧 = 𝑦 → (𝐴𝑧𝐴𝑦))
31, 2sbievw2 2099 1 ([𝑦 / 𝑥]𝐴𝑥𝐴𝑦)
Colors of variables: wff setvar class
Syntax hints:  wb 205  [wsb 2067  wcel 2106
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116
This theorem depends on definitions:  df-bi 206  df-an 397  df-ex 1783  df-sb 2068  df-clel 2816
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator