MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  clelsb2 Structured version   Visualization version   GIF version

Theorem clelsb2 2868
Description: Substitution for the second argument of the membership predicate in an atomic formula (class version of elsb2 2129). (Contributed by Jim Kingdon, 22-Nov-2018.)
Assertion
Ref Expression
clelsb2 ([𝑦 / 𝑥]𝐴𝑥𝐴𝑦)
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝐴(𝑦)

Proof of Theorem clelsb2
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 nfv 1922 . . 3 𝑥 𝐴𝑤
21sbco2 2516 . 2 ([𝑦 / 𝑥][𝑥 / 𝑤]𝐴𝑤 ↔ [𝑦 / 𝑤]𝐴𝑤)
3 nfv 1922 . . . 4 𝑤 𝐴𝑥
4 eleq2 2828 . . . 4 (𝑤 = 𝑥 → (𝐴𝑤𝐴𝑥))
53, 4sbie 2507 . . 3 ([𝑥 / 𝑤]𝐴𝑤𝐴𝑥)
65sbbii 2084 . 2 ([𝑦 / 𝑥][𝑥 / 𝑤]𝐴𝑤 ↔ [𝑦 / 𝑥]𝐴𝑥)
7 nfv 1922 . . 3 𝑤 𝐴𝑦
8 eleq2 2828 . . 3 (𝑤 = 𝑦 → (𝐴𝑤𝐴𝑦))
97, 8sbie 2507 . 2 ([𝑦 / 𝑤]𝐴𝑤𝐴𝑦)
102, 6, 93bitr3i 304 1 ([𝑦 / 𝑥]𝐴𝑥𝐴𝑦)
Colors of variables: wff setvar class
Syntax hints:  wb 209  [wsb 2072  wcel 2112
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2160  ax-12 2177  ax-13 2373  ax-ext 2710
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-tru 1546  df-ex 1788  df-nf 1792  df-sb 2073  df-cleq 2731  df-clel 2818
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator