![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > clelsb1 | Structured version Visualization version GIF version |
Description: Substitution for the first argument of the membership predicate in an atomic formula (class version of elsb1 2116). (Contributed by Rodolfo Medina, 28-Apr-2010.) (Proof shortened by Andrew Salmon, 14-Jun-2011.) |
Ref | Expression |
---|---|
clelsb1 | ⊢ ([𝑦 / 𝑥]𝑥 ∈ 𝐴 ↔ 𝑦 ∈ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq1w 2827 | . 2 ⊢ (𝑥 = 𝑤 → (𝑥 ∈ 𝐴 ↔ 𝑤 ∈ 𝐴)) | |
2 | eleq1w 2827 | . 2 ⊢ (𝑤 = 𝑦 → (𝑤 ∈ 𝐴 ↔ 𝑦 ∈ 𝐴)) | |
3 | 1, 2 | sbievw2 2098 | 1 ⊢ ([𝑦 / 𝑥]𝑥 ∈ 𝐴 ↔ 𝑦 ∈ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 [wsb 2064 ∈ wcel 2108 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1778 df-sb 2065 df-clel 2819 |
This theorem is referenced by: hblem 2876 hblemg 2877 eqabdv 2878 clelsb1fw 2912 clelsb1f 2913 cbvreuwOLD 3423 cbvreu 3435 elrabi 3703 sbcel1v 3875 rmo3 3911 kmlem15 10234 iuninc 32583 measiuns 34181 ballotlemodife 34462 bj-nfcf 36889 ellimcabssub0 45538 |
Copyright terms: Public domain | W3C validator |