MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  clelsb1 Structured version   Visualization version   GIF version

Theorem clelsb1 2867
Description: Substitution for the first argument of the membership predicate in an atomic formula (class version of elsb1 2120). (Contributed by Rodolfo Medina, 28-Apr-2010.) (Proof shortened by Andrew Salmon, 14-Jun-2011.)
Assertion
Ref Expression
clelsb1 ([𝑦 / 𝑥]𝑥𝐴𝑦𝐴)
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝐴(𝑦)

Proof of Theorem clelsb1
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 eleq1w 2822 . 2 (𝑥 = 𝑤 → (𝑥𝐴𝑤𝐴))
2 eleq1w 2822 . 2 (𝑤 = 𝑦 → (𝑤𝐴𝑦𝐴))
31, 2sbievw2 2105 1 ([𝑦 / 𝑥]𝑥𝐴𝑦𝐴)
Colors of variables: wff setvar class
Syntax hints:  wb 209  [wsb 2072  wcel 2112
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2114
This theorem depends on definitions:  df-bi 210  df-an 400  df-ex 1788  df-sb 2073  df-clel 2818
This theorem is referenced by:  hblem  2870  hblemg  2871  abbi2dv  2877  nfcriiOLD  2900  clelsb1fw  2911  clelsb1f  2912  cbvreuw  3366  cbvreu  3371  elrabi  3612  sbcel1v  3784  rmo3  3819  kmlem15  9826  iuninc  30776  measiuns  32060  ballotlemodife  32339  bj-nfcf  35013  ellimcabssub0  43021
  Copyright terms: Public domain W3C validator