| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > clelsb1 | Structured version Visualization version GIF version | ||
| Description: Substitution for the first argument of the membership predicate in an atomic formula (class version of elsb1 2121). (Contributed by Rodolfo Medina, 28-Apr-2010.) (Proof shortened by Andrew Salmon, 14-Jun-2011.) |
| Ref | Expression |
|---|---|
| clelsb1 | ⊢ ([𝑦 / 𝑥]𝑥 ∈ 𝐴 ↔ 𝑦 ∈ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq1w 2816 | . 2 ⊢ (𝑥 = 𝑤 → (𝑥 ∈ 𝐴 ↔ 𝑤 ∈ 𝐴)) | |
| 2 | eleq1w 2816 | . 2 ⊢ (𝑤 = 𝑦 → (𝑤 ∈ 𝐴 ↔ 𝑦 ∈ 𝐴)) | |
| 3 | 1, 2 | sbievw2 2103 | 1 ⊢ ([𝑦 / 𝑥]𝑥 ∈ 𝐴 ↔ 𝑦 ∈ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 [wsb 2067 ∈ wcel 2113 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-sb 2068 df-clel 2808 |
| This theorem is referenced by: hblem 2864 hblemg 2865 eqabdv 2866 clelsb1fw 2899 clelsb1f 2900 cbvreu 3388 elrabi 3639 sbcel1v 3803 rmo3 3836 kmlem15 10063 iuninc 32542 measiuns 34251 ballotlemodife 34532 bj-nfcf 36988 ellimcabssub0 45742 |
| Copyright terms: Public domain | W3C validator |