MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  clelsb1 Structured version   Visualization version   GIF version

Theorem clelsb1 2852
Description: Substitution for the first argument of the membership predicate in an atomic formula (class version of elsb1 2106). (Contributed by Rodolfo Medina, 28-Apr-2010.) (Proof shortened by Andrew Salmon, 14-Jun-2011.)
Assertion
Ref Expression
clelsb1 ([𝑦 / 𝑥]𝑥𝐴𝑦𝐴)
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝐴(𝑦)

Proof of Theorem clelsb1
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 eleq1w 2808 . 2 (𝑥 = 𝑤 → (𝑥𝐴𝑤𝐴))
2 eleq1w 2808 . 2 (𝑤 = 𝑦 → (𝑤𝐴𝑦𝐴))
31, 2sbievw2 2091 1 ([𝑦 / 𝑥]𝑥𝐴𝑦𝐴)
Colors of variables: wff setvar class
Syntax hints:  wb 205  [wsb 2059  wcel 2098
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100
This theorem depends on definitions:  df-bi 206  df-an 395  df-ex 1774  df-sb 2060  df-clel 2802
This theorem is referenced by:  hblem  2857  hblemg  2858  eqabdv  2859  clelsb1fw  2895  clelsb1f  2896  cbvreuwOLD  3398  cbvreu  3410  elrabi  3673  sbcel1v  3844  rmo3  3879  kmlem15  10189  iuninc  32430  measiuns  33967  ballotlemodife  34248  bj-nfcf  36532  ellimcabssub0  45143
  Copyright terms: Public domain W3C validator