Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > clelsb1 | Structured version Visualization version GIF version |
Description: Substitution for the first argument of the membership predicate in an atomic formula (class version of elsb1 2120). (Contributed by Rodolfo Medina, 28-Apr-2010.) (Proof shortened by Andrew Salmon, 14-Jun-2011.) |
Ref | Expression |
---|---|
clelsb1 | ⊢ ([𝑦 / 𝑥]𝑥 ∈ 𝐴 ↔ 𝑦 ∈ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq1w 2822 | . 2 ⊢ (𝑥 = 𝑤 → (𝑥 ∈ 𝐴 ↔ 𝑤 ∈ 𝐴)) | |
2 | eleq1w 2822 | . 2 ⊢ (𝑤 = 𝑦 → (𝑤 ∈ 𝐴 ↔ 𝑦 ∈ 𝐴)) | |
3 | 1, 2 | sbievw2 2105 | 1 ⊢ ([𝑦 / 𝑥]𝑥 ∈ 𝐴 ↔ 𝑦 ∈ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 209 [wsb 2072 ∈ wcel 2112 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2114 |
This theorem depends on definitions: df-bi 210 df-an 400 df-ex 1788 df-sb 2073 df-clel 2818 |
This theorem is referenced by: hblem 2870 hblemg 2871 abbi2dv 2877 nfcriiOLD 2900 clelsb1fw 2911 clelsb1f 2912 cbvreuw 3366 cbvreu 3371 elrabi 3612 sbcel1v 3784 rmo3 3819 kmlem15 9826 iuninc 30776 measiuns 32060 ballotlemodife 32339 bj-nfcf 35013 ellimcabssub0 43021 |
Copyright terms: Public domain | W3C validator |