| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > clelsb1 | Structured version Visualization version GIF version | ||
| Description: Substitution for the first argument of the membership predicate in an atomic formula (class version of elsb1 2119). (Contributed by Rodolfo Medina, 28-Apr-2010.) (Proof shortened by Andrew Salmon, 14-Jun-2011.) |
| Ref | Expression |
|---|---|
| clelsb1 | ⊢ ([𝑦 / 𝑥]𝑥 ∈ 𝐴 ↔ 𝑦 ∈ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq1w 2814 | . 2 ⊢ (𝑥 = 𝑤 → (𝑥 ∈ 𝐴 ↔ 𝑤 ∈ 𝐴)) | |
| 2 | eleq1w 2814 | . 2 ⊢ (𝑤 = 𝑦 → (𝑤 ∈ 𝐴 ↔ 𝑦 ∈ 𝐴)) | |
| 3 | 1, 2 | sbievw2 2101 | 1 ⊢ ([𝑦 / 𝑥]𝑥 ∈ 𝐴 ↔ 𝑦 ∈ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 [wsb 2067 ∈ wcel 2111 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-sb 2068 df-clel 2806 |
| This theorem is referenced by: hblem 2862 hblemg 2863 eqabdv 2864 clelsb1fw 2898 clelsb1f 2899 cbvreu 3387 elrabi 3643 sbcel1v 3807 rmo3 3840 kmlem15 10056 iuninc 32538 measiuns 34228 ballotlemodife 34509 bj-nfcf 36963 ellimcabssub0 45663 |
| Copyright terms: Public domain | W3C validator |