Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > clelsb1 | Structured version Visualization version GIF version |
Description: Substitution for the first argument of the membership predicate in an atomic formula (class version of elsb1 2114). (Contributed by Rodolfo Medina, 28-Apr-2010.) (Proof shortened by Andrew Salmon, 14-Jun-2011.) |
Ref | Expression |
---|---|
clelsb1 | ⊢ ([𝑦 / 𝑥]𝑥 ∈ 𝐴 ↔ 𝑦 ∈ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq1w 2821 | . 2 ⊢ (𝑥 = 𝑤 → (𝑥 ∈ 𝐴 ↔ 𝑤 ∈ 𝐴)) | |
2 | eleq1w 2821 | . 2 ⊢ (𝑤 = 𝑦 → (𝑤 ∈ 𝐴 ↔ 𝑦 ∈ 𝐴)) | |
3 | 1, 2 | sbievw2 2099 | 1 ⊢ ([𝑦 / 𝑥]𝑥 ∈ 𝐴 ↔ 𝑦 ∈ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 [wsb 2067 ∈ wcel 2106 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 |
This theorem depends on definitions: df-bi 206 df-an 397 df-ex 1783 df-sb 2068 df-clel 2816 |
This theorem is referenced by: hblem 2870 hblemg 2871 abbi2dv 2877 nfcriiOLD 2900 clelsb1fw 2911 clelsb1f 2912 cbvreuw 3373 cbvreu 3378 elrabi 3617 sbcel1v 3786 rmo3 3821 kmlem15 9930 iuninc 30908 measiuns 32193 ballotlemodife 32472 bj-nfcf 35119 ellimcabssub0 43139 |
Copyright terms: Public domain | W3C validator |