![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > eleq2w | Structured version Visualization version GIF version |
Description: Weaker version of eleq2 2822 (but more general than elequ2 2121) not depending on ax-ext 2703 nor df-cleq 2724. (Contributed by BJ, 29-Sep-2019.) |
Ref | Expression |
---|---|
eleq2w | ⊢ (𝑥 = 𝑦 → (𝐴 ∈ 𝑥 ↔ 𝐴 ∈ 𝑦)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elequ2 2121 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝑧 ∈ 𝑥 ↔ 𝑧 ∈ 𝑦)) | |
2 | 1 | anbi2d 629 | . . 3 ⊢ (𝑥 = 𝑦 → ((𝑧 = 𝐴 ∧ 𝑧 ∈ 𝑥) ↔ (𝑧 = 𝐴 ∧ 𝑧 ∈ 𝑦))) |
3 | 2 | exbidv 1924 | . 2 ⊢ (𝑥 = 𝑦 → (∃𝑧(𝑧 = 𝐴 ∧ 𝑧 ∈ 𝑥) ↔ ∃𝑧(𝑧 = 𝐴 ∧ 𝑧 ∈ 𝑦))) |
4 | dfclel 2811 | . 2 ⊢ (𝐴 ∈ 𝑥 ↔ ∃𝑧(𝑧 = 𝐴 ∧ 𝑧 ∈ 𝑥)) | |
5 | dfclel 2811 | . 2 ⊢ (𝐴 ∈ 𝑦 ↔ ∃𝑧(𝑧 = 𝐴 ∧ 𝑧 ∈ 𝑦)) | |
6 | 3, 4, 5 | 3bitr4g 313 | 1 ⊢ (𝑥 = 𝑦 → (𝐴 ∈ 𝑥 ↔ 𝐴 ∈ 𝑦)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1541 ∃wex 1781 ∈ wcel 2106 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 |
This theorem depends on definitions: df-bi 206 df-an 397 df-ex 1782 df-clel 2810 |
This theorem is referenced by: clelsb2 2861 eluniab 4923 elintabg 4961 elintabOLD 4963 cantnflem1c 9681 tcrank 9878 isf32lem2 10348 sadcp1 16395 subgacs 19040 nsgacs 19041 sdrgacs 20416 lssacs 20577 elcls3 22586 conncompconn 22935 1stcfb 22948 dfac14lem 23120 r0cld 23241 uffix 23424 flftg 23499 tgpconncompeqg 23615 wilth 26572 tghilberti2 27886 umgr2edgneu 28468 uspgredg2v 28478 usgredgleordALT 28488 nbusgrf1o 28625 vtxdushgrfvedglem 28743 ddemeas 33229 cvmcov 34249 cvmseu 34262 sat1el2xp 34365 hilbert1.2 35122 fneint 35228 mnuprdlem1 43021 mnuprdlem2 43022 mnuprdlem4 43024 elunif 43690 fnchoice 43703 lmbr3 44453 |
Copyright terms: Public domain | W3C validator |