| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eleq2w | Structured version Visualization version GIF version | ||
| Description: Weaker version of eleq2 2823 (but more general than elequ2 2123) not depending on ax-ext 2707 nor df-cleq 2727. (Contributed by BJ, 29-Sep-2019.) |
| Ref | Expression |
|---|---|
| eleq2w | ⊢ (𝑥 = 𝑦 → (𝐴 ∈ 𝑥 ↔ 𝐴 ∈ 𝑦)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elequ2 2123 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝑧 ∈ 𝑥 ↔ 𝑧 ∈ 𝑦)) | |
| 2 | 1 | anbi2d 630 | . . 3 ⊢ (𝑥 = 𝑦 → ((𝑧 = 𝐴 ∧ 𝑧 ∈ 𝑥) ↔ (𝑧 = 𝐴 ∧ 𝑧 ∈ 𝑦))) |
| 3 | 2 | exbidv 1921 | . 2 ⊢ (𝑥 = 𝑦 → (∃𝑧(𝑧 = 𝐴 ∧ 𝑧 ∈ 𝑥) ↔ ∃𝑧(𝑧 = 𝐴 ∧ 𝑧 ∈ 𝑦))) |
| 4 | dfclel 2810 | . 2 ⊢ (𝐴 ∈ 𝑥 ↔ ∃𝑧(𝑧 = 𝐴 ∧ 𝑧 ∈ 𝑥)) | |
| 5 | dfclel 2810 | . 2 ⊢ (𝐴 ∈ 𝑦 ↔ ∃𝑧(𝑧 = 𝐴 ∧ 𝑧 ∈ 𝑦)) | |
| 6 | 3, 4, 5 | 3bitr4g 314 | 1 ⊢ (𝑥 = 𝑦 → (𝐴 ∈ 𝑥 ↔ 𝐴 ∈ 𝑦)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∃wex 1779 ∈ wcel 2108 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-clel 2809 |
| This theorem is referenced by: clelsb2 2862 eluniab 4897 elintabg 4933 elintabOLD 4935 cantnflem1c 9701 tcrank 9898 isf32lem2 10368 sadcp1 16474 subgacs 19144 nsgacs 19145 sdrgacs 20761 lssacs 20924 elcls3 23021 conncompconn 23370 1stcfb 23383 dfac14lem 23555 r0cld 23676 uffix 23859 flftg 23934 tgpconncompeqg 24050 wilth 27033 tghilberti2 28617 umgr2edgneu 29193 uspgredg2v 29203 usgredgleordALT 29213 nbusgrf1o 29350 vtxdushgrfvedglem 29469 constrmon 33778 ddemeas 34267 cvmcov 35285 cvmseu 35298 sat1el2xp 35401 hilbert1.2 36173 fneint 36366 mnuprdlem1 44296 mnuprdlem2 44297 mnuprdlem4 44299 elunif 45040 fnchoice 45053 lmbr3 45776 |
| Copyright terms: Public domain | W3C validator |