![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > eleq2w | Structured version Visualization version GIF version |
Description: Weaker version of eleq2 2828 (but more general than elequ2 2121) not depending on ax-ext 2706 nor df-cleq 2727. (Contributed by BJ, 29-Sep-2019.) |
Ref | Expression |
---|---|
eleq2w | ⊢ (𝑥 = 𝑦 → (𝐴 ∈ 𝑥 ↔ 𝐴 ∈ 𝑦)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elequ2 2121 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝑧 ∈ 𝑥 ↔ 𝑧 ∈ 𝑦)) | |
2 | 1 | anbi2d 630 | . . 3 ⊢ (𝑥 = 𝑦 → ((𝑧 = 𝐴 ∧ 𝑧 ∈ 𝑥) ↔ (𝑧 = 𝐴 ∧ 𝑧 ∈ 𝑦))) |
3 | 2 | exbidv 1919 | . 2 ⊢ (𝑥 = 𝑦 → (∃𝑧(𝑧 = 𝐴 ∧ 𝑧 ∈ 𝑥) ↔ ∃𝑧(𝑧 = 𝐴 ∧ 𝑧 ∈ 𝑦))) |
4 | dfclel 2815 | . 2 ⊢ (𝐴 ∈ 𝑥 ↔ ∃𝑧(𝑧 = 𝐴 ∧ 𝑧 ∈ 𝑥)) | |
5 | dfclel 2815 | . 2 ⊢ (𝐴 ∈ 𝑦 ↔ ∃𝑧(𝑧 = 𝐴 ∧ 𝑧 ∈ 𝑦)) | |
6 | 3, 4, 5 | 3bitr4g 314 | 1 ⊢ (𝑥 = 𝑦 → (𝐴 ∈ 𝑥 ↔ 𝐴 ∈ 𝑦)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∃wex 1776 ∈ wcel 2106 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1777 df-clel 2814 |
This theorem is referenced by: clelsb2 2867 eluniab 4926 elintabg 4962 elintabOLD 4964 cantnflem1c 9725 tcrank 9922 isf32lem2 10392 sadcp1 16489 subgacs 19192 nsgacs 19193 sdrgacs 20819 lssacs 20983 elcls3 23107 conncompconn 23456 1stcfb 23469 dfac14lem 23641 r0cld 23762 uffix 23945 flftg 24020 tgpconncompeqg 24136 wilth 27129 tghilberti2 28661 umgr2edgneu 29246 uspgredg2v 29256 usgredgleordALT 29266 nbusgrf1o 29403 vtxdushgrfvedglem 29522 constrmon 33749 ddemeas 34217 cvmcov 35248 cvmseu 35261 sat1el2xp 35364 hilbert1.2 36137 fneint 36331 mnuprdlem1 44268 mnuprdlem2 44269 mnuprdlem4 44271 elunif 44954 fnchoice 44967 lmbr3 45703 |
Copyright terms: Public domain | W3C validator |