Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > eleq2w | Structured version Visualization version GIF version |
Description: Weaker version of eleq2 2821 (but more general than elequ2 2129) not depending on ax-ext 2710 nor df-cleq 2730. (Contributed by BJ, 29-Sep-2019.) |
Ref | Expression |
---|---|
eleq2w | ⊢ (𝑥 = 𝑦 → (𝐴 ∈ 𝑥 ↔ 𝐴 ∈ 𝑦)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elequ2 2129 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝑧 ∈ 𝑥 ↔ 𝑧 ∈ 𝑦)) | |
2 | 1 | anbi2d 632 | . . 3 ⊢ (𝑥 = 𝑦 → ((𝑧 = 𝐴 ∧ 𝑧 ∈ 𝑥) ↔ (𝑧 = 𝐴 ∧ 𝑧 ∈ 𝑦))) |
3 | 2 | exbidv 1928 | . 2 ⊢ (𝑥 = 𝑦 → (∃𝑧(𝑧 = 𝐴 ∧ 𝑧 ∈ 𝑥) ↔ ∃𝑧(𝑧 = 𝐴 ∧ 𝑧 ∈ 𝑦))) |
4 | dfclel 2812 | . 2 ⊢ (𝐴 ∈ 𝑥 ↔ ∃𝑧(𝑧 = 𝐴 ∧ 𝑧 ∈ 𝑥)) | |
5 | dfclel 2812 | . 2 ⊢ (𝐴 ∈ 𝑦 ↔ ∃𝑧(𝑧 = 𝐴 ∧ 𝑧 ∈ 𝑦)) | |
6 | 3, 4, 5 | 3bitr4g 317 | 1 ⊢ (𝑥 = 𝑦 → (𝐴 ∈ 𝑥 ↔ 𝐴 ∈ 𝑦)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∧ wa 399 = wceq 1542 ∃wex 1786 ∈ wcel 2114 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2020 ax-8 2116 ax-9 2124 |
This theorem depends on definitions: df-bi 210 df-an 400 df-ex 1787 df-clel 2811 |
This theorem is referenced by: eluniab 4811 elintab 4847 cantnflem1c 9223 tcrank 9386 isf32lem2 9854 sadcp1 15898 subgacs 18431 nsgacs 18432 sdrgacs 19699 lssacs 19858 elcls3 21834 conncompconn 22183 1stcfb 22196 dfac14lem 22368 r0cld 22489 uffix 22672 flftg 22747 tgpconncompeqg 22863 wilth 25808 tghilberti2 26584 umgr2edgneu 27156 uspgredg2v 27166 usgredgleordALT 27176 nbusgrf1o 27313 vtxdushgrfvedglem 27431 ddemeas 31774 cvmcov 32796 cvmseu 32809 sat1el2xp 32912 hilbert1.2 34095 fneint 34175 elintabg 40727 mnuprdlem1 41432 mnuprdlem2 41433 mnuprdlem4 41435 elunif 42097 fnchoice 42110 lmbr3 42830 |
Copyright terms: Public domain | W3C validator |