MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eleq2w Structured version   Visualization version   GIF version

Theorem eleq2w 2812
Description: Weaker version of eleq2 2817 (but more general than elequ2 2124) not depending on ax-ext 2701 nor df-cleq 2721. (Contributed by BJ, 29-Sep-2019.)
Assertion
Ref Expression
eleq2w (𝑥 = 𝑦 → (𝐴𝑥𝐴𝑦))

Proof of Theorem eleq2w
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 elequ2 2124 . . . 4 (𝑥 = 𝑦 → (𝑧𝑥𝑧𝑦))
21anbi2d 630 . . 3 (𝑥 = 𝑦 → ((𝑧 = 𝐴𝑧𝑥) ↔ (𝑧 = 𝐴𝑧𝑦)))
32exbidv 1921 . 2 (𝑥 = 𝑦 → (∃𝑧(𝑧 = 𝐴𝑧𝑥) ↔ ∃𝑧(𝑧 = 𝐴𝑧𝑦)))
4 dfclel 2804 . 2 (𝐴𝑥 ↔ ∃𝑧(𝑧 = 𝐴𝑧𝑥))
5 dfclel 2804 . 2 (𝐴𝑦 ↔ ∃𝑧(𝑧 = 𝐴𝑧𝑦))
63, 4, 53bitr4g 314 1 (𝑥 = 𝑦 → (𝐴𝑥𝐴𝑦))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wex 1779  wcel 2109
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1780  df-clel 2803
This theorem is referenced by:  clelsb2  2856  eluniab  4872  elintabg  4907  elintabOLD  4909  cantnflem1c  9583  tcrank  9780  isf32lem2  10248  sadcp1  16366  subgacs  19040  nsgacs  19041  sdrgacs  20686  lssacs  20870  elcls3  22968  conncompconn  23317  1stcfb  23330  dfac14lem  23502  r0cld  23623  uffix  23806  flftg  23881  tgpconncompeqg  23997  wilth  26979  tghilberti2  28587  umgr2edgneu  29163  uspgredg2v  29173  usgredgleordALT  29183  nbusgrf1o  29320  vtxdushgrfvedglem  29439  constrmon  33727  ddemeas  34219  cvmcov  35256  cvmseu  35269  sat1el2xp  35372  hilbert1.2  36149  fneint  36342  mnuprdlem1  44265  mnuprdlem2  44266  mnuprdlem4  44268  elunif  45014  fnchoice  45027  lmbr3  45748
  Copyright terms: Public domain W3C validator