MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eleq2w Structured version   Visualization version   GIF version

Theorem eleq2w 2813
Description: Weaker version of eleq2 2818 (but more general than elequ2 2124) not depending on ax-ext 2702 nor df-cleq 2722. (Contributed by BJ, 29-Sep-2019.)
Assertion
Ref Expression
eleq2w (𝑥 = 𝑦 → (𝐴𝑥𝐴𝑦))

Proof of Theorem eleq2w
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 elequ2 2124 . . . 4 (𝑥 = 𝑦 → (𝑧𝑥𝑧𝑦))
21anbi2d 630 . . 3 (𝑥 = 𝑦 → ((𝑧 = 𝐴𝑧𝑥) ↔ (𝑧 = 𝐴𝑧𝑦)))
32exbidv 1921 . 2 (𝑥 = 𝑦 → (∃𝑧(𝑧 = 𝐴𝑧𝑥) ↔ ∃𝑧(𝑧 = 𝐴𝑧𝑦)))
4 dfclel 2805 . 2 (𝐴𝑥 ↔ ∃𝑧(𝑧 = 𝐴𝑧𝑥))
5 dfclel 2805 . 2 (𝐴𝑦 ↔ ∃𝑧(𝑧 = 𝐴𝑧𝑦))
63, 4, 53bitr4g 314 1 (𝑥 = 𝑦 → (𝐴𝑥𝐴𝑦))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wex 1779  wcel 2109
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1780  df-clel 2804
This theorem is referenced by:  clelsb2  2857  eluniab  4888  elintabg  4924  elintabOLD  4926  cantnflem1c  9647  tcrank  9844  isf32lem2  10314  sadcp1  16432  subgacs  19100  nsgacs  19101  sdrgacs  20717  lssacs  20880  elcls3  22977  conncompconn  23326  1stcfb  23339  dfac14lem  23511  r0cld  23632  uffix  23815  flftg  23890  tgpconncompeqg  24006  wilth  26988  tghilberti2  28572  umgr2edgneu  29148  uspgredg2v  29158  usgredgleordALT  29168  nbusgrf1o  29305  vtxdushgrfvedglem  29424  constrmon  33741  ddemeas  34233  cvmcov  35257  cvmseu  35270  sat1el2xp  35373  hilbert1.2  36150  fneint  36343  mnuprdlem1  44268  mnuprdlem2  44269  mnuprdlem4  44271  elunif  45017  fnchoice  45030  lmbr3  45752
  Copyright terms: Public domain W3C validator