MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eleq2w Structured version   Visualization version   GIF version

Theorem eleq2w 2815
Description: Weaker version of eleq2 2820 (but more general than elequ2 2126) not depending on ax-ext 2703 nor df-cleq 2723. (Contributed by BJ, 29-Sep-2019.)
Assertion
Ref Expression
eleq2w (𝑥 = 𝑦 → (𝐴𝑥𝐴𝑦))

Proof of Theorem eleq2w
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 elequ2 2126 . . . 4 (𝑥 = 𝑦 → (𝑧𝑥𝑧𝑦))
21anbi2d 630 . . 3 (𝑥 = 𝑦 → ((𝑧 = 𝐴𝑧𝑥) ↔ (𝑧 = 𝐴𝑧𝑦)))
32exbidv 1922 . 2 (𝑥 = 𝑦 → (∃𝑧(𝑧 = 𝐴𝑧𝑥) ↔ ∃𝑧(𝑧 = 𝐴𝑧𝑦)))
4 dfclel 2807 . 2 (𝐴𝑥 ↔ ∃𝑧(𝑧 = 𝐴𝑧𝑥))
5 dfclel 2807 . 2 (𝐴𝑦 ↔ ∃𝑧(𝑧 = 𝐴𝑧𝑦))
63, 4, 53bitr4g 314 1 (𝑥 = 𝑦 → (𝐴𝑥𝐴𝑦))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wex 1780  wcel 2111
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1781  df-clel 2806
This theorem is referenced by:  clelsb2  2859  eluniab  4870  elintabg  4906  cantnflem1c  9577  tcrank  9777  isf32lem2  10245  sadcp1  16366  subgacs  19073  nsgacs  19074  sdrgacs  20716  lssacs  20900  elcls3  22998  conncompconn  23347  1stcfb  23360  dfac14lem  23532  r0cld  23653  uffix  23836  flftg  23911  tgpconncompeqg  24027  wilth  27008  tghilberti2  28616  umgr2edgneu  29192  uspgredg2v  29202  usgredgleordALT  29212  nbusgrf1o  29349  vtxdushgrfvedglem  29468  constrmon  33757  ddemeas  34249  cvmcov  35307  cvmseu  35320  sat1el2xp  35423  hilbert1.2  36199  fneint  36392  mnuprdlem1  44364  mnuprdlem2  44365  mnuprdlem4  44367  elunif  45112  fnchoice  45125  lmbr3  45844
  Copyright terms: Public domain W3C validator