| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eleq2w | Structured version Visualization version GIF version | ||
| Description: Weaker version of eleq2 2817 (but more general than elequ2 2124) not depending on ax-ext 2701 nor df-cleq 2721. (Contributed by BJ, 29-Sep-2019.) |
| Ref | Expression |
|---|---|
| eleq2w | ⊢ (𝑥 = 𝑦 → (𝐴 ∈ 𝑥 ↔ 𝐴 ∈ 𝑦)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elequ2 2124 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝑧 ∈ 𝑥 ↔ 𝑧 ∈ 𝑦)) | |
| 2 | 1 | anbi2d 630 | . . 3 ⊢ (𝑥 = 𝑦 → ((𝑧 = 𝐴 ∧ 𝑧 ∈ 𝑥) ↔ (𝑧 = 𝐴 ∧ 𝑧 ∈ 𝑦))) |
| 3 | 2 | exbidv 1921 | . 2 ⊢ (𝑥 = 𝑦 → (∃𝑧(𝑧 = 𝐴 ∧ 𝑧 ∈ 𝑥) ↔ ∃𝑧(𝑧 = 𝐴 ∧ 𝑧 ∈ 𝑦))) |
| 4 | dfclel 2804 | . 2 ⊢ (𝐴 ∈ 𝑥 ↔ ∃𝑧(𝑧 = 𝐴 ∧ 𝑧 ∈ 𝑥)) | |
| 5 | dfclel 2804 | . 2 ⊢ (𝐴 ∈ 𝑦 ↔ ∃𝑧(𝑧 = 𝐴 ∧ 𝑧 ∈ 𝑦)) | |
| 6 | 3, 4, 5 | 3bitr4g 314 | 1 ⊢ (𝑥 = 𝑦 → (𝐴 ∈ 𝑥 ↔ 𝐴 ∈ 𝑦)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∃wex 1779 ∈ wcel 2109 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-clel 2803 |
| This theorem is referenced by: clelsb2 2856 eluniab 4885 elintabg 4921 elintabOLD 4923 cantnflem1c 9640 tcrank 9837 isf32lem2 10307 sadcp1 16425 subgacs 19093 nsgacs 19094 sdrgacs 20710 lssacs 20873 elcls3 22970 conncompconn 23319 1stcfb 23332 dfac14lem 23504 r0cld 23625 uffix 23808 flftg 23883 tgpconncompeqg 23999 wilth 26981 tghilberti2 28565 umgr2edgneu 29141 uspgredg2v 29151 usgredgleordALT 29161 nbusgrf1o 29298 vtxdushgrfvedglem 29417 constrmon 33734 ddemeas 34226 cvmcov 35250 cvmseu 35263 sat1el2xp 35366 hilbert1.2 36143 fneint 36336 mnuprdlem1 44261 mnuprdlem2 44262 mnuprdlem4 44264 elunif 45010 fnchoice 45023 lmbr3 45745 |
| Copyright terms: Public domain | W3C validator |