| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eleq2w | Structured version Visualization version GIF version | ||
| Description: Weaker version of eleq2 2818 (but more general than elequ2 2124) not depending on ax-ext 2702 nor df-cleq 2722. (Contributed by BJ, 29-Sep-2019.) |
| Ref | Expression |
|---|---|
| eleq2w | ⊢ (𝑥 = 𝑦 → (𝐴 ∈ 𝑥 ↔ 𝐴 ∈ 𝑦)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elequ2 2124 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝑧 ∈ 𝑥 ↔ 𝑧 ∈ 𝑦)) | |
| 2 | 1 | anbi2d 630 | . . 3 ⊢ (𝑥 = 𝑦 → ((𝑧 = 𝐴 ∧ 𝑧 ∈ 𝑥) ↔ (𝑧 = 𝐴 ∧ 𝑧 ∈ 𝑦))) |
| 3 | 2 | exbidv 1921 | . 2 ⊢ (𝑥 = 𝑦 → (∃𝑧(𝑧 = 𝐴 ∧ 𝑧 ∈ 𝑥) ↔ ∃𝑧(𝑧 = 𝐴 ∧ 𝑧 ∈ 𝑦))) |
| 4 | dfclel 2805 | . 2 ⊢ (𝐴 ∈ 𝑥 ↔ ∃𝑧(𝑧 = 𝐴 ∧ 𝑧 ∈ 𝑥)) | |
| 5 | dfclel 2805 | . 2 ⊢ (𝐴 ∈ 𝑦 ↔ ∃𝑧(𝑧 = 𝐴 ∧ 𝑧 ∈ 𝑦)) | |
| 6 | 3, 4, 5 | 3bitr4g 314 | 1 ⊢ (𝑥 = 𝑦 → (𝐴 ∈ 𝑥 ↔ 𝐴 ∈ 𝑦)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∃wex 1779 ∈ wcel 2109 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-clel 2804 |
| This theorem is referenced by: clelsb2 2857 eluniab 4888 elintabg 4924 elintabOLD 4926 cantnflem1c 9647 tcrank 9844 isf32lem2 10314 sadcp1 16432 subgacs 19100 nsgacs 19101 sdrgacs 20717 lssacs 20880 elcls3 22977 conncompconn 23326 1stcfb 23339 dfac14lem 23511 r0cld 23632 uffix 23815 flftg 23890 tgpconncompeqg 24006 wilth 26988 tghilberti2 28572 umgr2edgneu 29148 uspgredg2v 29158 usgredgleordALT 29168 nbusgrf1o 29305 vtxdushgrfvedglem 29424 constrmon 33741 ddemeas 34233 cvmcov 35257 cvmseu 35270 sat1el2xp 35373 hilbert1.2 36150 fneint 36343 mnuprdlem1 44268 mnuprdlem2 44269 mnuprdlem4 44271 elunif 45017 fnchoice 45030 lmbr3 45752 |
| Copyright terms: Public domain | W3C validator |