MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eleq2w Structured version   Visualization version   GIF version

Theorem eleq2w 2812
Description: Weaker version of eleq2 2817 (but more general than elequ2 2124) not depending on ax-ext 2701 nor df-cleq 2721. (Contributed by BJ, 29-Sep-2019.)
Assertion
Ref Expression
eleq2w (𝑥 = 𝑦 → (𝐴𝑥𝐴𝑦))

Proof of Theorem eleq2w
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 elequ2 2124 . . . 4 (𝑥 = 𝑦 → (𝑧𝑥𝑧𝑦))
21anbi2d 630 . . 3 (𝑥 = 𝑦 → ((𝑧 = 𝐴𝑧𝑥) ↔ (𝑧 = 𝐴𝑧𝑦)))
32exbidv 1921 . 2 (𝑥 = 𝑦 → (∃𝑧(𝑧 = 𝐴𝑧𝑥) ↔ ∃𝑧(𝑧 = 𝐴𝑧𝑦)))
4 dfclel 2804 . 2 (𝐴𝑥 ↔ ∃𝑧(𝑧 = 𝐴𝑧𝑥))
5 dfclel 2804 . 2 (𝐴𝑦 ↔ ∃𝑧(𝑧 = 𝐴𝑧𝑦))
63, 4, 53bitr4g 314 1 (𝑥 = 𝑦 → (𝐴𝑥𝐴𝑦))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wex 1779  wcel 2109
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1780  df-clel 2803
This theorem is referenced by:  clelsb2  2856  eluniab  4881  elintabg  4917  elintabOLD  4919  cantnflem1c  9616  tcrank  9813  isf32lem2  10283  sadcp1  16401  subgacs  19075  nsgacs  19076  sdrgacs  20721  lssacs  20905  elcls3  23003  conncompconn  23352  1stcfb  23365  dfac14lem  23537  r0cld  23658  uffix  23841  flftg  23916  tgpconncompeqg  24032  wilth  27014  tghilberti2  28618  umgr2edgneu  29194  uspgredg2v  29204  usgredgleordALT  29214  nbusgrf1o  29351  vtxdushgrfvedglem  29470  constrmon  33727  ddemeas  34219  cvmcov  35243  cvmseu  35256  sat1el2xp  35359  hilbert1.2  36136  fneint  36329  mnuprdlem1  44254  mnuprdlem2  44255  mnuprdlem4  44257  elunif  45003  fnchoice  45016  lmbr3  45738
  Copyright terms: Public domain W3C validator