MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eleq2w Structured version   Visualization version   GIF version

Theorem eleq2w 2812
Description: Weaker version of eleq2 2817 (but more general than elequ2 2124) not depending on ax-ext 2701 nor df-cleq 2721. (Contributed by BJ, 29-Sep-2019.)
Assertion
Ref Expression
eleq2w (𝑥 = 𝑦 → (𝐴𝑥𝐴𝑦))

Proof of Theorem eleq2w
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 elequ2 2124 . . . 4 (𝑥 = 𝑦 → (𝑧𝑥𝑧𝑦))
21anbi2d 630 . . 3 (𝑥 = 𝑦 → ((𝑧 = 𝐴𝑧𝑥) ↔ (𝑧 = 𝐴𝑧𝑦)))
32exbidv 1921 . 2 (𝑥 = 𝑦 → (∃𝑧(𝑧 = 𝐴𝑧𝑥) ↔ ∃𝑧(𝑧 = 𝐴𝑧𝑦)))
4 dfclel 2804 . 2 (𝐴𝑥 ↔ ∃𝑧(𝑧 = 𝐴𝑧𝑥))
5 dfclel 2804 . 2 (𝐴𝑦 ↔ ∃𝑧(𝑧 = 𝐴𝑧𝑦))
63, 4, 53bitr4g 314 1 (𝑥 = 𝑦 → (𝐴𝑥𝐴𝑦))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wex 1779  wcel 2109
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1780  df-clel 2803
This theorem is referenced by:  clelsb2  2856  eluniab  4881  elintabg  4917  elintabOLD  4919  cantnflem1c  9618  tcrank  9815  isf32lem2  10285  sadcp1  16402  subgacs  19076  nsgacs  19077  sdrgacs  20722  lssacs  20906  elcls3  23004  conncompconn  23353  1stcfb  23366  dfac14lem  23538  r0cld  23659  uffix  23842  flftg  23917  tgpconncompeqg  24033  wilth  27015  tghilberti2  28619  umgr2edgneu  29195  uspgredg2v  29205  usgredgleordALT  29215  nbusgrf1o  29352  vtxdushgrfvedglem  29471  constrmon  33728  ddemeas  34220  cvmcov  35244  cvmseu  35257  sat1el2xp  35360  hilbert1.2  36137  fneint  36330  mnuprdlem1  44255  mnuprdlem2  44256  mnuprdlem4  44258  elunif  45004  fnchoice  45017  lmbr3  45739
  Copyright terms: Public domain W3C validator