![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > eleq2w | Structured version Visualization version GIF version |
Description: Weaker version of eleq2 2833 (but more general than elequ2 2123) not depending on ax-ext 2711 nor df-cleq 2732. (Contributed by BJ, 29-Sep-2019.) |
Ref | Expression |
---|---|
eleq2w | ⊢ (𝑥 = 𝑦 → (𝐴 ∈ 𝑥 ↔ 𝐴 ∈ 𝑦)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elequ2 2123 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝑧 ∈ 𝑥 ↔ 𝑧 ∈ 𝑦)) | |
2 | 1 | anbi2d 629 | . . 3 ⊢ (𝑥 = 𝑦 → ((𝑧 = 𝐴 ∧ 𝑧 ∈ 𝑥) ↔ (𝑧 = 𝐴 ∧ 𝑧 ∈ 𝑦))) |
3 | 2 | exbidv 1920 | . 2 ⊢ (𝑥 = 𝑦 → (∃𝑧(𝑧 = 𝐴 ∧ 𝑧 ∈ 𝑥) ↔ ∃𝑧(𝑧 = 𝐴 ∧ 𝑧 ∈ 𝑦))) |
4 | dfclel 2820 | . 2 ⊢ (𝐴 ∈ 𝑥 ↔ ∃𝑧(𝑧 = 𝐴 ∧ 𝑧 ∈ 𝑥)) | |
5 | dfclel 2820 | . 2 ⊢ (𝐴 ∈ 𝑦 ↔ ∃𝑧(𝑧 = 𝐴 ∧ 𝑧 ∈ 𝑦)) | |
6 | 3, 4, 5 | 3bitr4g 314 | 1 ⊢ (𝑥 = 𝑦 → (𝐴 ∈ 𝑥 ↔ 𝐴 ∈ 𝑦)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∃wex 1777 ∈ wcel 2108 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1778 df-clel 2819 |
This theorem is referenced by: clelsb2 2872 eluniab 4945 elintabg 4981 elintabOLD 4983 cantnflem1c 9756 tcrank 9953 isf32lem2 10423 sadcp1 16501 subgacs 19201 nsgacs 19202 sdrgacs 20824 lssacs 20988 elcls3 23112 conncompconn 23461 1stcfb 23474 dfac14lem 23646 r0cld 23767 uffix 23950 flftg 24025 tgpconncompeqg 24141 wilth 27132 tghilberti2 28664 umgr2edgneu 29249 uspgredg2v 29259 usgredgleordALT 29269 nbusgrf1o 29406 vtxdushgrfvedglem 29525 constrmon 33734 ddemeas 34200 cvmcov 35231 cvmseu 35244 sat1el2xp 35347 hilbert1.2 36119 fneint 36314 mnuprdlem1 44241 mnuprdlem2 44242 mnuprdlem4 44244 elunif 44916 fnchoice 44929 lmbr3 45668 |
Copyright terms: Public domain | W3C validator |