| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eleq2w | Structured version Visualization version GIF version | ||
| Description: Weaker version of eleq2 2820 (but more general than elequ2 2126) not depending on ax-ext 2703 nor df-cleq 2723. (Contributed by BJ, 29-Sep-2019.) |
| Ref | Expression |
|---|---|
| eleq2w | ⊢ (𝑥 = 𝑦 → (𝐴 ∈ 𝑥 ↔ 𝐴 ∈ 𝑦)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elequ2 2126 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝑧 ∈ 𝑥 ↔ 𝑧 ∈ 𝑦)) | |
| 2 | 1 | anbi2d 630 | . . 3 ⊢ (𝑥 = 𝑦 → ((𝑧 = 𝐴 ∧ 𝑧 ∈ 𝑥) ↔ (𝑧 = 𝐴 ∧ 𝑧 ∈ 𝑦))) |
| 3 | 2 | exbidv 1922 | . 2 ⊢ (𝑥 = 𝑦 → (∃𝑧(𝑧 = 𝐴 ∧ 𝑧 ∈ 𝑥) ↔ ∃𝑧(𝑧 = 𝐴 ∧ 𝑧 ∈ 𝑦))) |
| 4 | dfclel 2807 | . 2 ⊢ (𝐴 ∈ 𝑥 ↔ ∃𝑧(𝑧 = 𝐴 ∧ 𝑧 ∈ 𝑥)) | |
| 5 | dfclel 2807 | . 2 ⊢ (𝐴 ∈ 𝑦 ↔ ∃𝑧(𝑧 = 𝐴 ∧ 𝑧 ∈ 𝑦)) | |
| 6 | 3, 4, 5 | 3bitr4g 314 | 1 ⊢ (𝑥 = 𝑦 → (𝐴 ∈ 𝑥 ↔ 𝐴 ∈ 𝑦)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∃wex 1780 ∈ wcel 2111 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-clel 2806 |
| This theorem is referenced by: clelsb2 2859 eluniab 4870 elintabg 4906 cantnflem1c 9577 tcrank 9777 isf32lem2 10245 sadcp1 16366 subgacs 19073 nsgacs 19074 sdrgacs 20716 lssacs 20900 elcls3 22998 conncompconn 23347 1stcfb 23360 dfac14lem 23532 r0cld 23653 uffix 23836 flftg 23911 tgpconncompeqg 24027 wilth 27008 tghilberti2 28616 umgr2edgneu 29192 uspgredg2v 29202 usgredgleordALT 29212 nbusgrf1o 29349 vtxdushgrfvedglem 29468 constrmon 33757 ddemeas 34249 cvmcov 35307 cvmseu 35320 sat1el2xp 35423 hilbert1.2 36199 fneint 36392 mnuprdlem1 44364 mnuprdlem2 44365 mnuprdlem4 44367 elunif 45112 fnchoice 45125 lmbr3 45844 |
| Copyright terms: Public domain | W3C validator |