MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eleq2w Structured version   Visualization version   GIF version

Theorem eleq2w 2818
Description: Weaker version of eleq2 2823 (but more general than elequ2 2123) not depending on ax-ext 2707 nor df-cleq 2727. (Contributed by BJ, 29-Sep-2019.)
Assertion
Ref Expression
eleq2w (𝑥 = 𝑦 → (𝐴𝑥𝐴𝑦))

Proof of Theorem eleq2w
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 elequ2 2123 . . . 4 (𝑥 = 𝑦 → (𝑧𝑥𝑧𝑦))
21anbi2d 630 . . 3 (𝑥 = 𝑦 → ((𝑧 = 𝐴𝑧𝑥) ↔ (𝑧 = 𝐴𝑧𝑦)))
32exbidv 1921 . 2 (𝑥 = 𝑦 → (∃𝑧(𝑧 = 𝐴𝑧𝑥) ↔ ∃𝑧(𝑧 = 𝐴𝑧𝑦)))
4 dfclel 2810 . 2 (𝐴𝑥 ↔ ∃𝑧(𝑧 = 𝐴𝑧𝑥))
5 dfclel 2810 . 2 (𝐴𝑦 ↔ ∃𝑧(𝑧 = 𝐴𝑧𝑦))
63, 4, 53bitr4g 314 1 (𝑥 = 𝑦 → (𝐴𝑥𝐴𝑦))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wex 1779  wcel 2108
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1780  df-clel 2809
This theorem is referenced by:  clelsb2  2862  eluniab  4897  elintabg  4933  elintabOLD  4935  cantnflem1c  9701  tcrank  9898  isf32lem2  10368  sadcp1  16474  subgacs  19144  nsgacs  19145  sdrgacs  20761  lssacs  20924  elcls3  23021  conncompconn  23370  1stcfb  23383  dfac14lem  23555  r0cld  23676  uffix  23859  flftg  23934  tgpconncompeqg  24050  wilth  27033  tghilberti2  28617  umgr2edgneu  29193  uspgredg2v  29203  usgredgleordALT  29213  nbusgrf1o  29350  vtxdushgrfvedglem  29469  constrmon  33778  ddemeas  34267  cvmcov  35285  cvmseu  35298  sat1el2xp  35401  hilbert1.2  36173  fneint  36366  mnuprdlem1  44296  mnuprdlem2  44297  mnuprdlem4  44299  elunif  45040  fnchoice  45053  lmbr3  45776
  Copyright terms: Public domain W3C validator