| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eleq2w | Structured version Visualization version GIF version | ||
| Description: Weaker version of eleq2 2817 (but more general than elequ2 2124) not depending on ax-ext 2701 nor df-cleq 2721. (Contributed by BJ, 29-Sep-2019.) |
| Ref | Expression |
|---|---|
| eleq2w | ⊢ (𝑥 = 𝑦 → (𝐴 ∈ 𝑥 ↔ 𝐴 ∈ 𝑦)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elequ2 2124 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝑧 ∈ 𝑥 ↔ 𝑧 ∈ 𝑦)) | |
| 2 | 1 | anbi2d 630 | . . 3 ⊢ (𝑥 = 𝑦 → ((𝑧 = 𝐴 ∧ 𝑧 ∈ 𝑥) ↔ (𝑧 = 𝐴 ∧ 𝑧 ∈ 𝑦))) |
| 3 | 2 | exbidv 1921 | . 2 ⊢ (𝑥 = 𝑦 → (∃𝑧(𝑧 = 𝐴 ∧ 𝑧 ∈ 𝑥) ↔ ∃𝑧(𝑧 = 𝐴 ∧ 𝑧 ∈ 𝑦))) |
| 4 | dfclel 2804 | . 2 ⊢ (𝐴 ∈ 𝑥 ↔ ∃𝑧(𝑧 = 𝐴 ∧ 𝑧 ∈ 𝑥)) | |
| 5 | dfclel 2804 | . 2 ⊢ (𝐴 ∈ 𝑦 ↔ ∃𝑧(𝑧 = 𝐴 ∧ 𝑧 ∈ 𝑦)) | |
| 6 | 3, 4, 5 | 3bitr4g 314 | 1 ⊢ (𝑥 = 𝑦 → (𝐴 ∈ 𝑥 ↔ 𝐴 ∈ 𝑦)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∃wex 1779 ∈ wcel 2109 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-clel 2803 |
| This theorem is referenced by: clelsb2 2856 eluniab 4881 elintabg 4917 elintabOLD 4919 cantnflem1c 9618 tcrank 9815 isf32lem2 10285 sadcp1 16402 subgacs 19076 nsgacs 19077 sdrgacs 20722 lssacs 20906 elcls3 23004 conncompconn 23353 1stcfb 23366 dfac14lem 23538 r0cld 23659 uffix 23842 flftg 23917 tgpconncompeqg 24033 wilth 27015 tghilberti2 28619 umgr2edgneu 29195 uspgredg2v 29205 usgredgleordALT 29215 nbusgrf1o 29352 vtxdushgrfvedglem 29471 constrmon 33728 ddemeas 34220 cvmcov 35244 cvmseu 35257 sat1el2xp 35360 hilbert1.2 36137 fneint 36330 mnuprdlem1 44255 mnuprdlem2 44256 mnuprdlem4 44258 elunif 45004 fnchoice 45017 lmbr3 45739 |
| Copyright terms: Public domain | W3C validator |