![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > eleq2w | Structured version Visualization version GIF version |
Description: Weaker version of eleq2 2822 (but more general than elequ2 2121) not depending on ax-ext 2703 nor df-cleq 2724. (Contributed by BJ, 29-Sep-2019.) |
Ref | Expression |
---|---|
eleq2w | ⊢ (𝑥 = 𝑦 → (𝐴 ∈ 𝑥 ↔ 𝐴 ∈ 𝑦)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elequ2 2121 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝑧 ∈ 𝑥 ↔ 𝑧 ∈ 𝑦)) | |
2 | 1 | anbi2d 629 | . . 3 ⊢ (𝑥 = 𝑦 → ((𝑧 = 𝐴 ∧ 𝑧 ∈ 𝑥) ↔ (𝑧 = 𝐴 ∧ 𝑧 ∈ 𝑦))) |
3 | 2 | exbidv 1924 | . 2 ⊢ (𝑥 = 𝑦 → (∃𝑧(𝑧 = 𝐴 ∧ 𝑧 ∈ 𝑥) ↔ ∃𝑧(𝑧 = 𝐴 ∧ 𝑧 ∈ 𝑦))) |
4 | dfclel 2811 | . 2 ⊢ (𝐴 ∈ 𝑥 ↔ ∃𝑧(𝑧 = 𝐴 ∧ 𝑧 ∈ 𝑥)) | |
5 | dfclel 2811 | . 2 ⊢ (𝐴 ∈ 𝑦 ↔ ∃𝑧(𝑧 = 𝐴 ∧ 𝑧 ∈ 𝑦)) | |
6 | 3, 4, 5 | 3bitr4g 313 | 1 ⊢ (𝑥 = 𝑦 → (𝐴 ∈ 𝑥 ↔ 𝐴 ∈ 𝑦)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1541 ∃wex 1781 ∈ wcel 2106 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 |
This theorem depends on definitions: df-bi 206 df-an 397 df-ex 1782 df-clel 2810 |
This theorem is referenced by: clelsb2 2861 eluniab 4923 elintabg 4961 elintabOLD 4963 cantnflem1c 9684 tcrank 9881 isf32lem2 10351 sadcp1 16400 subgacs 19077 nsgacs 19078 sdrgacs 20560 lssacs 20722 elcls3 22807 conncompconn 23156 1stcfb 23169 dfac14lem 23341 r0cld 23462 uffix 23645 flftg 23720 tgpconncompeqg 23836 wilth 26799 tghilberti2 28144 umgr2edgneu 28726 uspgredg2v 28736 usgredgleordALT 28746 nbusgrf1o 28883 vtxdushgrfvedglem 29001 ddemeas 33520 cvmcov 34540 cvmseu 34553 sat1el2xp 34656 hilbert1.2 35419 fneint 35536 mnuprdlem1 43333 mnuprdlem2 43334 mnuprdlem4 43336 elunif 44002 fnchoice 44015 lmbr3 44762 |
Copyright terms: Public domain | W3C validator |