![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > eleq2w | Structured version Visualization version GIF version |
Description: Weaker version of eleq2 2867 (but more general than elequ2 2171) not depending on ax-ext 2777 nor df-cleq 2792. (Contributed by BJ, 29-Sep-2019.) |
Ref | Expression |
---|---|
eleq2w | ⊢ (𝑥 = 𝑦 → (𝐴 ∈ 𝑥 ↔ 𝐴 ∈ 𝑦)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elequ2 2171 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝑧 ∈ 𝑥 ↔ 𝑧 ∈ 𝑦)) | |
2 | 1 | anbi2d 623 | . . 3 ⊢ (𝑥 = 𝑦 → ((𝑧 = 𝐴 ∧ 𝑧 ∈ 𝑥) ↔ (𝑧 = 𝐴 ∧ 𝑧 ∈ 𝑦))) |
3 | 2 | exbidv 2017 | . 2 ⊢ (𝑥 = 𝑦 → (∃𝑧(𝑧 = 𝐴 ∧ 𝑧 ∈ 𝑥) ↔ ∃𝑧(𝑧 = 𝐴 ∧ 𝑧 ∈ 𝑦))) |
4 | df-clel 2795 | . 2 ⊢ (𝐴 ∈ 𝑥 ↔ ∃𝑧(𝑧 = 𝐴 ∧ 𝑧 ∈ 𝑥)) | |
5 | df-clel 2795 | . 2 ⊢ (𝐴 ∈ 𝑦 ↔ ∃𝑧(𝑧 = 𝐴 ∧ 𝑧 ∈ 𝑦)) | |
6 | 3, 4, 5 | 3bitr4g 306 | 1 ⊢ (𝑥 = 𝑦 → (𝐴 ∈ 𝑥 ↔ 𝐴 ∈ 𝑦)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ wa 385 = wceq 1653 ∃wex 1875 ∈ wcel 2157 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-9 2166 |
This theorem depends on definitions: df-bi 199 df-an 386 df-ex 1876 df-clel 2795 |
This theorem is referenced by: eluniab 4639 elintab 4678 cantnflem1c 8834 tcrank 8997 isf32lem2 9464 sadcp1 15512 subgacs 17942 nsgacs 17943 lssacs 19288 elcls3 21216 conncompconn 21564 1stcfb 21577 dfac14lem 21749 r0cld 21870 uffix 22053 flftg 22128 tgpconncompeqg 22243 wilth 25149 tghilberti2 25889 umgr2edgneu 26447 uspgredg2v 26457 usgredgleordALT 26468 nbusgrf1o 26615 vtxdushgrfvedglem 26739 ddemeas 30815 cvmcov 31762 cvmseu 31775 hilbert1.2 32775 fneint 32855 sdrgacs 38556 elintabg 38663 elunif 39935 fnchoice 39948 lmbr3 40723 |
Copyright terms: Public domain | W3C validator |