| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > clelsb2OLD | Structured version Visualization version GIF version | ||
| Description: Obsolete version of clelsb2 2868 as of 24-Nov-2024.) (Contributed by Jim Kingdon, 22-Nov-2018.) (Proof modification is discouraged.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| clelsb2OLD | ⊢ ([𝑦 / 𝑥]𝐴 ∈ 𝑥 ↔ 𝐴 ∈ 𝑦) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfv 1913 | . . 3 ⊢ Ⅎ𝑥 𝐴 ∈ 𝑤 | |
| 2 | 1 | sbco2 2515 | . 2 ⊢ ([𝑦 / 𝑥][𝑥 / 𝑤]𝐴 ∈ 𝑤 ↔ [𝑦 / 𝑤]𝐴 ∈ 𝑤) |
| 3 | nfv 1913 | . . . 4 ⊢ Ⅎ𝑤 𝐴 ∈ 𝑥 | |
| 4 | eleq2 2829 | . . . 4 ⊢ (𝑤 = 𝑥 → (𝐴 ∈ 𝑤 ↔ 𝐴 ∈ 𝑥)) | |
| 5 | 3, 4 | sbie 2506 | . . 3 ⊢ ([𝑥 / 𝑤]𝐴 ∈ 𝑤 ↔ 𝐴 ∈ 𝑥) |
| 6 | 5 | sbbii 2075 | . 2 ⊢ ([𝑦 / 𝑥][𝑥 / 𝑤]𝐴 ∈ 𝑤 ↔ [𝑦 / 𝑥]𝐴 ∈ 𝑥) |
| 7 | nfv 1913 | . . 3 ⊢ Ⅎ𝑤 𝐴 ∈ 𝑦 | |
| 8 | eleq2 2829 | . . 3 ⊢ (𝑤 = 𝑦 → (𝐴 ∈ 𝑤 ↔ 𝐴 ∈ 𝑦)) | |
| 9 | 7, 8 | sbie 2506 | . 2 ⊢ ([𝑦 / 𝑤]𝐴 ∈ 𝑤 ↔ 𝐴 ∈ 𝑦) |
| 10 | 2, 6, 9 | 3bitr3i 301 | 1 ⊢ ([𝑦 / 𝑥]𝐴 ∈ 𝑥 ↔ 𝐴 ∈ 𝑦) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 [wsb 2063 ∈ wcel 2107 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-13 2376 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1542 df-ex 1779 df-nf 1783 df-sb 2064 df-cleq 2728 df-clel 2815 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |