Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > clelsb2OLD | Structured version Visualization version GIF version |
Description: Obsolete version of clelsb2 2867 as of 24-Nov-2024.) (Contributed by Jim Kingdon, 22-Nov-2018.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
clelsb2OLD | ⊢ ([𝑦 / 𝑥]𝐴 ∈ 𝑥 ↔ 𝐴 ∈ 𝑦) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1917 | . . 3 ⊢ Ⅎ𝑥 𝐴 ∈ 𝑤 | |
2 | 1 | sbco2 2515 | . 2 ⊢ ([𝑦 / 𝑥][𝑥 / 𝑤]𝐴 ∈ 𝑤 ↔ [𝑦 / 𝑤]𝐴 ∈ 𝑤) |
3 | nfv 1917 | . . . 4 ⊢ Ⅎ𝑤 𝐴 ∈ 𝑥 | |
4 | eleq2 2827 | . . . 4 ⊢ (𝑤 = 𝑥 → (𝐴 ∈ 𝑤 ↔ 𝐴 ∈ 𝑥)) | |
5 | 3, 4 | sbie 2506 | . . 3 ⊢ ([𝑥 / 𝑤]𝐴 ∈ 𝑤 ↔ 𝐴 ∈ 𝑥) |
6 | 5 | sbbii 2079 | . 2 ⊢ ([𝑦 / 𝑥][𝑥 / 𝑤]𝐴 ∈ 𝑤 ↔ [𝑦 / 𝑥]𝐴 ∈ 𝑥) |
7 | nfv 1917 | . . 3 ⊢ Ⅎ𝑤 𝐴 ∈ 𝑦 | |
8 | eleq2 2827 | . . 3 ⊢ (𝑤 = 𝑦 → (𝐴 ∈ 𝑤 ↔ 𝐴 ∈ 𝑦)) | |
9 | 7, 8 | sbie 2506 | . 2 ⊢ ([𝑦 / 𝑤]𝐴 ∈ 𝑤 ↔ 𝐴 ∈ 𝑦) |
10 | 2, 6, 9 | 3bitr3i 301 | 1 ⊢ ([𝑦 / 𝑥]𝐴 ∈ 𝑥 ↔ 𝐴 ∈ 𝑦) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 [wsb 2067 ∈ wcel 2106 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-13 2372 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-tru 1542 df-ex 1783 df-nf 1787 df-sb 2068 df-cleq 2730 df-clel 2816 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |