MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  clelsb2OLD Structured version   Visualization version   GIF version

Theorem clelsb2OLD 2873
Description: Obsolete version of clelsb2 2872 as of 24-Nov-2024.) (Contributed by Jim Kingdon, 22-Nov-2018.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
clelsb2OLD ([𝑦 / 𝑥]𝐴𝑥𝐴𝑦)
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝐴(𝑦)

Proof of Theorem clelsb2OLD
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 nfv 1913 . . 3 𝑥 𝐴𝑤
21sbco2 2519 . 2 ([𝑦 / 𝑥][𝑥 / 𝑤]𝐴𝑤 ↔ [𝑦 / 𝑤]𝐴𝑤)
3 nfv 1913 . . . 4 𝑤 𝐴𝑥
4 eleq2 2833 . . . 4 (𝑤 = 𝑥 → (𝐴𝑤𝐴𝑥))
53, 4sbie 2510 . . 3 ([𝑥 / 𝑤]𝐴𝑤𝐴𝑥)
65sbbii 2076 . 2 ([𝑦 / 𝑥][𝑥 / 𝑤]𝐴𝑤 ↔ [𝑦 / 𝑥]𝐴𝑥)
7 nfv 1913 . . 3 𝑤 𝐴𝑦
8 eleq2 2833 . . 3 (𝑤 = 𝑦 → (𝐴𝑤𝐴𝑦))
97, 8sbie 2510 . 2 ([𝑦 / 𝑤]𝐴𝑤𝐴𝑦)
102, 6, 93bitr3i 301 1 ([𝑦 / 𝑥]𝐴𝑥𝐴𝑦)
Colors of variables: wff setvar class
Syntax hints:  wb 206  [wsb 2064  wcel 2108
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-13 2380  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-tru 1540  df-ex 1778  df-nf 1782  df-sb 2065  df-cleq 2732  df-clel 2819
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator