Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dalemccnedd Structured version   Visualization version   GIF version

Theorem dalemccnedd 39689
Description: Lemma for dath 39738. Frequently-used utility lemma. (Contributed by NM, 15-Aug-2012.)
Hypothesis
Ref Expression
da.ps0 (𝜓 ↔ ((𝑐𝐴𝑑𝐴) ∧ ¬ 𝑐 𝑌 ∧ (𝑑𝑐 ∧ ¬ 𝑑 𝑌𝐶 (𝑐 𝑑))))
Assertion
Ref Expression
dalemccnedd (𝜓𝑐𝑑)

Proof of Theorem dalemccnedd
StepHypRef Expression
1 da.ps0 . . 3 (𝜓 ↔ ((𝑐𝐴𝑑𝐴) ∧ ¬ 𝑐 𝑌 ∧ (𝑑𝑐 ∧ ¬ 𝑑 𝑌𝐶 (𝑐 𝑑))))
2 simp31 1210 . . 3 (((𝑐𝐴𝑑𝐴) ∧ ¬ 𝑐 𝑌 ∧ (𝑑𝑐 ∧ ¬ 𝑑 𝑌𝐶 (𝑐 𝑑))) → 𝑑𝑐)
31, 2sylbi 217 . 2 (𝜓𝑑𝑐)
43necomd 2996 1 (𝜓𝑐𝑑)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1087  wcel 2108  wne 2940   class class class wbr 5143  (class class class)co 7431
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-9 2118  ax-ext 2708
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1089  df-ex 1780  df-cleq 2729  df-ne 2941
This theorem is referenced by:  dalemswapyzps  39692  dalemrotps  39693  dalemcjden  39694
  Copyright terms: Public domain W3C validator