Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > dalemccnedd | Structured version Visualization version GIF version |
Description: Lemma for dath 37750. Frequently-used utility lemma. (Contributed by NM, 15-Aug-2012.) |
Ref | Expression |
---|---|
da.ps0 | ⊢ (𝜓 ↔ ((𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐴) ∧ ¬ 𝑐 ≤ 𝑌 ∧ (𝑑 ≠ 𝑐 ∧ ¬ 𝑑 ≤ 𝑌 ∧ 𝐶 ≤ (𝑐 ∨ 𝑑)))) |
Ref | Expression |
---|---|
dalemccnedd | ⊢ (𝜓 → 𝑐 ≠ 𝑑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | da.ps0 | . . 3 ⊢ (𝜓 ↔ ((𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐴) ∧ ¬ 𝑐 ≤ 𝑌 ∧ (𝑑 ≠ 𝑐 ∧ ¬ 𝑑 ≤ 𝑌 ∧ 𝐶 ≤ (𝑐 ∨ 𝑑)))) | |
2 | simp31 1208 | . . 3 ⊢ (((𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐴) ∧ ¬ 𝑐 ≤ 𝑌 ∧ (𝑑 ≠ 𝑐 ∧ ¬ 𝑑 ≤ 𝑌 ∧ 𝐶 ≤ (𝑐 ∨ 𝑑))) → 𝑑 ≠ 𝑐) | |
3 | 1, 2 | sylbi 216 | . 2 ⊢ (𝜓 → 𝑑 ≠ 𝑐) |
4 | 3 | necomd 2999 | 1 ⊢ (𝜓 → 𝑐 ≠ 𝑑) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 396 ∧ w3a 1086 ∈ wcel 2106 ≠ wne 2943 class class class wbr 5074 (class class class)co 7275 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-3an 1088 df-ex 1783 df-cleq 2730 df-ne 2944 |
This theorem is referenced by: dalemswapyzps 37704 dalemrotps 37705 dalemcjden 37706 |
Copyright terms: Public domain | W3C validator |