Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > dalemswapyzps | Structured version Visualization version GIF version |
Description: Lemma for dath 37997. Swap the 𝑌 and 𝑍 planes, along with dummy concurrency (center of perspectivity) atoms 𝑐 and 𝑑, to allow reuse of analogous proofs. (Contributed by NM, 17-Aug-2012.) |
Ref | Expression |
---|---|
dalem.ph | ⊢ (𝜑 ↔ (((𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) ∧ (𝑌 ∈ 𝑂 ∧ 𝑍 ∈ 𝑂) ∧ ((¬ 𝐶 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝐶 ≤ (𝑄 ∨ 𝑅) ∧ ¬ 𝐶 ≤ (𝑅 ∨ 𝑃)) ∧ (¬ 𝐶 ≤ (𝑆 ∨ 𝑇) ∧ ¬ 𝐶 ≤ (𝑇 ∨ 𝑈) ∧ ¬ 𝐶 ≤ (𝑈 ∨ 𝑆)) ∧ (𝐶 ≤ (𝑃 ∨ 𝑆) ∧ 𝐶 ≤ (𝑄 ∨ 𝑇) ∧ 𝐶 ≤ (𝑅 ∨ 𝑈))))) |
dalem.l | ⊢ ≤ = (le‘𝐾) |
dalem.j | ⊢ ∨ = (join‘𝐾) |
dalem.a | ⊢ 𝐴 = (Atoms‘𝐾) |
dalem.ps | ⊢ (𝜓 ↔ ((𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐴) ∧ ¬ 𝑐 ≤ 𝑌 ∧ (𝑑 ≠ 𝑐 ∧ ¬ 𝑑 ≤ 𝑌 ∧ 𝐶 ≤ (𝑐 ∨ 𝑑)))) |
Ref | Expression |
---|---|
dalemswapyzps | ⊢ ((𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓) → ((𝑑 ∈ 𝐴 ∧ 𝑐 ∈ 𝐴) ∧ ¬ 𝑑 ≤ 𝑍 ∧ (𝑐 ≠ 𝑑 ∧ ¬ 𝑐 ≤ 𝑍 ∧ 𝐶 ≤ (𝑑 ∨ 𝑐)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dalem.ps | . . . . 5 ⊢ (𝜓 ↔ ((𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐴) ∧ ¬ 𝑐 ≤ 𝑌 ∧ (𝑑 ≠ 𝑐 ∧ ¬ 𝑑 ≤ 𝑌 ∧ 𝐶 ≤ (𝑐 ∨ 𝑑)))) | |
2 | 1 | dalemddea 37945 | . . . 4 ⊢ (𝜓 → 𝑑 ∈ 𝐴) |
3 | 1 | dalemccea 37944 | . . . 4 ⊢ (𝜓 → 𝑐 ∈ 𝐴) |
4 | 2, 3 | jca 512 | . . 3 ⊢ (𝜓 → (𝑑 ∈ 𝐴 ∧ 𝑐 ∈ 𝐴)) |
5 | 4 | 3ad2ant3 1134 | . 2 ⊢ ((𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓) → (𝑑 ∈ 𝐴 ∧ 𝑐 ∈ 𝐴)) |
6 | 1 | dalem-ddly 37947 | . . . 4 ⊢ (𝜓 → ¬ 𝑑 ≤ 𝑌) |
7 | 6 | 3ad2ant3 1134 | . . 3 ⊢ ((𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓) → ¬ 𝑑 ≤ 𝑌) |
8 | simp2 1136 | . . . 4 ⊢ ((𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓) → 𝑌 = 𝑍) | |
9 | 8 | breq2d 5101 | . . 3 ⊢ ((𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓) → (𝑑 ≤ 𝑌 ↔ 𝑑 ≤ 𝑍)) |
10 | 7, 9 | mtbid 323 | . 2 ⊢ ((𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓) → ¬ 𝑑 ≤ 𝑍) |
11 | 1 | dalemccnedd 37948 | . . . 4 ⊢ (𝜓 → 𝑐 ≠ 𝑑) |
12 | 11 | 3ad2ant3 1134 | . . 3 ⊢ ((𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓) → 𝑐 ≠ 𝑑) |
13 | 1 | dalem-ccly 37946 | . . . . 5 ⊢ (𝜓 → ¬ 𝑐 ≤ 𝑌) |
14 | 13 | 3ad2ant3 1134 | . . . 4 ⊢ ((𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓) → ¬ 𝑐 ≤ 𝑌) |
15 | 8 | breq2d 5101 | . . . 4 ⊢ ((𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓) → (𝑐 ≤ 𝑌 ↔ 𝑐 ≤ 𝑍)) |
16 | 14, 15 | mtbid 323 | . . 3 ⊢ ((𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓) → ¬ 𝑐 ≤ 𝑍) |
17 | 1 | dalemclccjdd 37949 | . . . . 5 ⊢ (𝜓 → 𝐶 ≤ (𝑐 ∨ 𝑑)) |
18 | 17 | 3ad2ant3 1134 | . . . 4 ⊢ ((𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓) → 𝐶 ≤ (𝑐 ∨ 𝑑)) |
19 | dalem.ph | . . . . . . 7 ⊢ (𝜑 ↔ (((𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) ∧ (𝑌 ∈ 𝑂 ∧ 𝑍 ∈ 𝑂) ∧ ((¬ 𝐶 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝐶 ≤ (𝑄 ∨ 𝑅) ∧ ¬ 𝐶 ≤ (𝑅 ∨ 𝑃)) ∧ (¬ 𝐶 ≤ (𝑆 ∨ 𝑇) ∧ ¬ 𝐶 ≤ (𝑇 ∨ 𝑈) ∧ ¬ 𝐶 ≤ (𝑈 ∨ 𝑆)) ∧ (𝐶 ≤ (𝑃 ∨ 𝑆) ∧ 𝐶 ≤ (𝑄 ∨ 𝑇) ∧ 𝐶 ≤ (𝑅 ∨ 𝑈))))) | |
20 | 19 | dalemkehl 37884 | . . . . . 6 ⊢ (𝜑 → 𝐾 ∈ HL) |
21 | 20 | 3ad2ant1 1132 | . . . . 5 ⊢ ((𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓) → 𝐾 ∈ HL) |
22 | 3 | 3ad2ant3 1134 | . . . . 5 ⊢ ((𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓) → 𝑐 ∈ 𝐴) |
23 | 2 | 3ad2ant3 1134 | . . . . 5 ⊢ ((𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓) → 𝑑 ∈ 𝐴) |
24 | dalem.j | . . . . . 6 ⊢ ∨ = (join‘𝐾) | |
25 | dalem.a | . . . . . 6 ⊢ 𝐴 = (Atoms‘𝐾) | |
26 | 24, 25 | hlatjcom 37628 | . . . . 5 ⊢ ((𝐾 ∈ HL ∧ 𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐴) → (𝑐 ∨ 𝑑) = (𝑑 ∨ 𝑐)) |
27 | 21, 22, 23, 26 | syl3anc 1370 | . . . 4 ⊢ ((𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓) → (𝑐 ∨ 𝑑) = (𝑑 ∨ 𝑐)) |
28 | 18, 27 | breqtrd 5115 | . . 3 ⊢ ((𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓) → 𝐶 ≤ (𝑑 ∨ 𝑐)) |
29 | 12, 16, 28 | 3jca 1127 | . 2 ⊢ ((𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓) → (𝑐 ≠ 𝑑 ∧ ¬ 𝑐 ≤ 𝑍 ∧ 𝐶 ≤ (𝑑 ∨ 𝑐))) |
30 | 5, 10, 29 | 3jca 1127 | 1 ⊢ ((𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓) → ((𝑑 ∈ 𝐴 ∧ 𝑐 ∈ 𝐴) ∧ ¬ 𝑑 ≤ 𝑍 ∧ (𝑐 ≠ 𝑑 ∧ ¬ 𝑐 ≤ 𝑍 ∧ 𝐶 ≤ (𝑑 ∨ 𝑐)))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 396 ∧ w3a 1086 = wceq 1540 ∈ wcel 2105 ≠ wne 2940 class class class wbr 5089 ‘cfv 6473 (class class class)co 7329 Basecbs 17001 lecple 17058 joincjn 18118 Atomscatm 37523 HLchlt 37610 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-rep 5226 ax-sep 5240 ax-nul 5247 ax-pow 5305 ax-pr 5369 ax-un 7642 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3350 df-rab 3404 df-v 3443 df-sbc 3727 df-csb 3843 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4269 df-if 4473 df-pw 4548 df-sn 4573 df-pr 4575 df-op 4579 df-uni 4852 df-iun 4940 df-br 5090 df-opab 5152 df-mpt 5173 df-id 5512 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6425 df-fun 6475 df-fn 6476 df-f 6477 df-f1 6478 df-fo 6479 df-f1o 6480 df-fv 6481 df-riota 7286 df-ov 7332 df-oprab 7333 df-lub 18153 df-join 18155 df-lat 18239 df-ats 37527 df-atl 37558 df-cvlat 37582 df-hlat 37611 |
This theorem is referenced by: dalem56 37989 |
Copyright terms: Public domain | W3C validator |