Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dalemswapyzps Structured version   Visualization version   GIF version

Theorem dalemswapyzps 37951
Description: Lemma for dath 37997. Swap the 𝑌 and 𝑍 planes, along with dummy concurrency (center of perspectivity) atoms 𝑐 and 𝑑, to allow reuse of analogous proofs. (Contributed by NM, 17-Aug-2012.)
Hypotheses
Ref Expression
dalem.ph (𝜑 ↔ (((𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (𝑌𝑂𝑍𝑂) ∧ ((¬ 𝐶 (𝑃 𝑄) ∧ ¬ 𝐶 (𝑄 𝑅) ∧ ¬ 𝐶 (𝑅 𝑃)) ∧ (¬ 𝐶 (𝑆 𝑇) ∧ ¬ 𝐶 (𝑇 𝑈) ∧ ¬ 𝐶 (𝑈 𝑆)) ∧ (𝐶 (𝑃 𝑆) ∧ 𝐶 (𝑄 𝑇) ∧ 𝐶 (𝑅 𝑈)))))
dalem.l = (le‘𝐾)
dalem.j = (join‘𝐾)
dalem.a 𝐴 = (Atoms‘𝐾)
dalem.ps (𝜓 ↔ ((𝑐𝐴𝑑𝐴) ∧ ¬ 𝑐 𝑌 ∧ (𝑑𝑐 ∧ ¬ 𝑑 𝑌𝐶 (𝑐 𝑑))))
Assertion
Ref Expression
dalemswapyzps ((𝜑𝑌 = 𝑍𝜓) → ((𝑑𝐴𝑐𝐴) ∧ ¬ 𝑑 𝑍 ∧ (𝑐𝑑 ∧ ¬ 𝑐 𝑍𝐶 (𝑑 𝑐))))

Proof of Theorem dalemswapyzps
StepHypRef Expression
1 dalem.ps . . . . 5 (𝜓 ↔ ((𝑐𝐴𝑑𝐴) ∧ ¬ 𝑐 𝑌 ∧ (𝑑𝑐 ∧ ¬ 𝑑 𝑌𝐶 (𝑐 𝑑))))
21dalemddea 37945 . . . 4 (𝜓𝑑𝐴)
31dalemccea 37944 . . . 4 (𝜓𝑐𝐴)
42, 3jca 512 . . 3 (𝜓 → (𝑑𝐴𝑐𝐴))
543ad2ant3 1134 . 2 ((𝜑𝑌 = 𝑍𝜓) → (𝑑𝐴𝑐𝐴))
61dalem-ddly 37947 . . . 4 (𝜓 → ¬ 𝑑 𝑌)
763ad2ant3 1134 . . 3 ((𝜑𝑌 = 𝑍𝜓) → ¬ 𝑑 𝑌)
8 simp2 1136 . . . 4 ((𝜑𝑌 = 𝑍𝜓) → 𝑌 = 𝑍)
98breq2d 5101 . . 3 ((𝜑𝑌 = 𝑍𝜓) → (𝑑 𝑌𝑑 𝑍))
107, 9mtbid 323 . 2 ((𝜑𝑌 = 𝑍𝜓) → ¬ 𝑑 𝑍)
111dalemccnedd 37948 . . . 4 (𝜓𝑐𝑑)
12113ad2ant3 1134 . . 3 ((𝜑𝑌 = 𝑍𝜓) → 𝑐𝑑)
131dalem-ccly 37946 . . . . 5 (𝜓 → ¬ 𝑐 𝑌)
14133ad2ant3 1134 . . . 4 ((𝜑𝑌 = 𝑍𝜓) → ¬ 𝑐 𝑌)
158breq2d 5101 . . . 4 ((𝜑𝑌 = 𝑍𝜓) → (𝑐 𝑌𝑐 𝑍))
1614, 15mtbid 323 . . 3 ((𝜑𝑌 = 𝑍𝜓) → ¬ 𝑐 𝑍)
171dalemclccjdd 37949 . . . . 5 (𝜓𝐶 (𝑐 𝑑))
18173ad2ant3 1134 . . . 4 ((𝜑𝑌 = 𝑍𝜓) → 𝐶 (𝑐 𝑑))
19 dalem.ph . . . . . . 7 (𝜑 ↔ (((𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (𝑌𝑂𝑍𝑂) ∧ ((¬ 𝐶 (𝑃 𝑄) ∧ ¬ 𝐶 (𝑄 𝑅) ∧ ¬ 𝐶 (𝑅 𝑃)) ∧ (¬ 𝐶 (𝑆 𝑇) ∧ ¬ 𝐶 (𝑇 𝑈) ∧ ¬ 𝐶 (𝑈 𝑆)) ∧ (𝐶 (𝑃 𝑆) ∧ 𝐶 (𝑄 𝑇) ∧ 𝐶 (𝑅 𝑈)))))
2019dalemkehl 37884 . . . . . 6 (𝜑𝐾 ∈ HL)
21203ad2ant1 1132 . . . . 5 ((𝜑𝑌 = 𝑍𝜓) → 𝐾 ∈ HL)
2233ad2ant3 1134 . . . . 5 ((𝜑𝑌 = 𝑍𝜓) → 𝑐𝐴)
2323ad2ant3 1134 . . . . 5 ((𝜑𝑌 = 𝑍𝜓) → 𝑑𝐴)
24 dalem.j . . . . . 6 = (join‘𝐾)
25 dalem.a . . . . . 6 𝐴 = (Atoms‘𝐾)
2624, 25hlatjcom 37628 . . . . 5 ((𝐾 ∈ HL ∧ 𝑐𝐴𝑑𝐴) → (𝑐 𝑑) = (𝑑 𝑐))
2721, 22, 23, 26syl3anc 1370 . . . 4 ((𝜑𝑌 = 𝑍𝜓) → (𝑐 𝑑) = (𝑑 𝑐))
2818, 27breqtrd 5115 . . 3 ((𝜑𝑌 = 𝑍𝜓) → 𝐶 (𝑑 𝑐))
2912, 16, 283jca 1127 . 2 ((𝜑𝑌 = 𝑍𝜓) → (𝑐𝑑 ∧ ¬ 𝑐 𝑍𝐶 (𝑑 𝑐)))
305, 10, 293jca 1127 1 ((𝜑𝑌 = 𝑍𝜓) → ((𝑑𝐴𝑐𝐴) ∧ ¬ 𝑑 𝑍 ∧ (𝑐𝑑 ∧ ¬ 𝑐 𝑍𝐶 (𝑑 𝑐))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  w3a 1086   = wceq 1540  wcel 2105  wne 2940   class class class wbr 5089  cfv 6473  (class class class)co 7329  Basecbs 17001  lecple 17058  joincjn 18118  Atomscatm 37523  HLchlt 37610
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2707  ax-rep 5226  ax-sep 5240  ax-nul 5247  ax-pow 5305  ax-pr 5369  ax-un 7642
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2886  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3350  df-rab 3404  df-v 3443  df-sbc 3727  df-csb 3843  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4269  df-if 4473  df-pw 4548  df-sn 4573  df-pr 4575  df-op 4579  df-uni 4852  df-iun 4940  df-br 5090  df-opab 5152  df-mpt 5173  df-id 5512  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6425  df-fun 6475  df-fn 6476  df-f 6477  df-f1 6478  df-fo 6479  df-f1o 6480  df-fv 6481  df-riota 7286  df-ov 7332  df-oprab 7333  df-lub 18153  df-join 18155  df-lat 18239  df-ats 37527  df-atl 37558  df-cvlat 37582  df-hlat 37611
This theorem is referenced by:  dalem56  37989
  Copyright terms: Public domain W3C validator