Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dalemswapyzps Structured version   Visualization version   GIF version

Theorem dalemswapyzps 39714
Description: Lemma for dath 39760. Swap the 𝑌 and 𝑍 planes, along with dummy concurrency (center of perspectivity) atoms 𝑐 and 𝑑, to allow reuse of analogous proofs. (Contributed by NM, 17-Aug-2012.)
Hypotheses
Ref Expression
dalem.ph (𝜑 ↔ (((𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (𝑌𝑂𝑍𝑂) ∧ ((¬ 𝐶 (𝑃 𝑄) ∧ ¬ 𝐶 (𝑄 𝑅) ∧ ¬ 𝐶 (𝑅 𝑃)) ∧ (¬ 𝐶 (𝑆 𝑇) ∧ ¬ 𝐶 (𝑇 𝑈) ∧ ¬ 𝐶 (𝑈 𝑆)) ∧ (𝐶 (𝑃 𝑆) ∧ 𝐶 (𝑄 𝑇) ∧ 𝐶 (𝑅 𝑈)))))
dalem.l = (le‘𝐾)
dalem.j = (join‘𝐾)
dalem.a 𝐴 = (Atoms‘𝐾)
dalem.ps (𝜓 ↔ ((𝑐𝐴𝑑𝐴) ∧ ¬ 𝑐 𝑌 ∧ (𝑑𝑐 ∧ ¬ 𝑑 𝑌𝐶 (𝑐 𝑑))))
Assertion
Ref Expression
dalemswapyzps ((𝜑𝑌 = 𝑍𝜓) → ((𝑑𝐴𝑐𝐴) ∧ ¬ 𝑑 𝑍 ∧ (𝑐𝑑 ∧ ¬ 𝑐 𝑍𝐶 (𝑑 𝑐))))

Proof of Theorem dalemswapyzps
StepHypRef Expression
1 dalem.ps . . . . 5 (𝜓 ↔ ((𝑐𝐴𝑑𝐴) ∧ ¬ 𝑐 𝑌 ∧ (𝑑𝑐 ∧ ¬ 𝑑 𝑌𝐶 (𝑐 𝑑))))
21dalemddea 39708 . . . 4 (𝜓𝑑𝐴)
31dalemccea 39707 . . . 4 (𝜓𝑐𝐴)
42, 3jca 511 . . 3 (𝜓 → (𝑑𝐴𝑐𝐴))
543ad2ant3 1135 . 2 ((𝜑𝑌 = 𝑍𝜓) → (𝑑𝐴𝑐𝐴))
61dalem-ddly 39710 . . . 4 (𝜓 → ¬ 𝑑 𝑌)
763ad2ant3 1135 . . 3 ((𝜑𝑌 = 𝑍𝜓) → ¬ 𝑑 𝑌)
8 simp2 1137 . . . 4 ((𝜑𝑌 = 𝑍𝜓) → 𝑌 = 𝑍)
98breq2d 5136 . . 3 ((𝜑𝑌 = 𝑍𝜓) → (𝑑 𝑌𝑑 𝑍))
107, 9mtbid 324 . 2 ((𝜑𝑌 = 𝑍𝜓) → ¬ 𝑑 𝑍)
111dalemccnedd 39711 . . . 4 (𝜓𝑐𝑑)
12113ad2ant3 1135 . . 3 ((𝜑𝑌 = 𝑍𝜓) → 𝑐𝑑)
131dalem-ccly 39709 . . . . 5 (𝜓 → ¬ 𝑐 𝑌)
14133ad2ant3 1135 . . . 4 ((𝜑𝑌 = 𝑍𝜓) → ¬ 𝑐 𝑌)
158breq2d 5136 . . . 4 ((𝜑𝑌 = 𝑍𝜓) → (𝑐 𝑌𝑐 𝑍))
1614, 15mtbid 324 . . 3 ((𝜑𝑌 = 𝑍𝜓) → ¬ 𝑐 𝑍)
171dalemclccjdd 39712 . . . . 5 (𝜓𝐶 (𝑐 𝑑))
18173ad2ant3 1135 . . . 4 ((𝜑𝑌 = 𝑍𝜓) → 𝐶 (𝑐 𝑑))
19 dalem.ph . . . . . . 7 (𝜑 ↔ (((𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (𝑌𝑂𝑍𝑂) ∧ ((¬ 𝐶 (𝑃 𝑄) ∧ ¬ 𝐶 (𝑄 𝑅) ∧ ¬ 𝐶 (𝑅 𝑃)) ∧ (¬ 𝐶 (𝑆 𝑇) ∧ ¬ 𝐶 (𝑇 𝑈) ∧ ¬ 𝐶 (𝑈 𝑆)) ∧ (𝐶 (𝑃 𝑆) ∧ 𝐶 (𝑄 𝑇) ∧ 𝐶 (𝑅 𝑈)))))
2019dalemkehl 39647 . . . . . 6 (𝜑𝐾 ∈ HL)
21203ad2ant1 1133 . . . . 5 ((𝜑𝑌 = 𝑍𝜓) → 𝐾 ∈ HL)
2233ad2ant3 1135 . . . . 5 ((𝜑𝑌 = 𝑍𝜓) → 𝑐𝐴)
2323ad2ant3 1135 . . . . 5 ((𝜑𝑌 = 𝑍𝜓) → 𝑑𝐴)
24 dalem.j . . . . . 6 = (join‘𝐾)
25 dalem.a . . . . . 6 𝐴 = (Atoms‘𝐾)
2624, 25hlatjcom 39391 . . . . 5 ((𝐾 ∈ HL ∧ 𝑐𝐴𝑑𝐴) → (𝑐 𝑑) = (𝑑 𝑐))
2721, 22, 23, 26syl3anc 1373 . . . 4 ((𝜑𝑌 = 𝑍𝜓) → (𝑐 𝑑) = (𝑑 𝑐))
2818, 27breqtrd 5150 . . 3 ((𝜑𝑌 = 𝑍𝜓) → 𝐶 (𝑑 𝑐))
2912, 16, 283jca 1128 . 2 ((𝜑𝑌 = 𝑍𝜓) → (𝑐𝑑 ∧ ¬ 𝑐 𝑍𝐶 (𝑑 𝑐)))
305, 10, 293jca 1128 1 ((𝜑𝑌 = 𝑍𝜓) → ((𝑑𝐴𝑐𝐴) ∧ ¬ 𝑑 𝑍 ∧ (𝑐𝑑 ∧ ¬ 𝑐 𝑍𝐶 (𝑑 𝑐))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2933   class class class wbr 5124  cfv 6536  (class class class)co 7410  Basecbs 17233  lecple 17283  joincjn 18328  Atomscatm 39286  HLchlt 39373
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-id 5553  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-ov 7413  df-oprab 7414  df-lub 18361  df-join 18363  df-lat 18447  df-ats 39290  df-atl 39321  df-cvlat 39345  df-hlat 39374
This theorem is referenced by:  dalem56  39752
  Copyright terms: Public domain W3C validator