![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dalemswapyzps | Structured version Visualization version GIF version |
Description: Lemma for dath 35810. Swap the 𝑌 and 𝑍 planes, along with dummy concurrency (center of perspectivity) atoms 𝑐 and 𝑑, to allow reuse of analogous proofs. (Contributed by NM, 17-Aug-2012.) |
Ref | Expression |
---|---|
dalem.ph | ⊢ (𝜑 ↔ (((𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) ∧ (𝑌 ∈ 𝑂 ∧ 𝑍 ∈ 𝑂) ∧ ((¬ 𝐶 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝐶 ≤ (𝑄 ∨ 𝑅) ∧ ¬ 𝐶 ≤ (𝑅 ∨ 𝑃)) ∧ (¬ 𝐶 ≤ (𝑆 ∨ 𝑇) ∧ ¬ 𝐶 ≤ (𝑇 ∨ 𝑈) ∧ ¬ 𝐶 ≤ (𝑈 ∨ 𝑆)) ∧ (𝐶 ≤ (𝑃 ∨ 𝑆) ∧ 𝐶 ≤ (𝑄 ∨ 𝑇) ∧ 𝐶 ≤ (𝑅 ∨ 𝑈))))) |
dalem.l | ⊢ ≤ = (le‘𝐾) |
dalem.j | ⊢ ∨ = (join‘𝐾) |
dalem.a | ⊢ 𝐴 = (Atoms‘𝐾) |
dalem.ps | ⊢ (𝜓 ↔ ((𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐴) ∧ ¬ 𝑐 ≤ 𝑌 ∧ (𝑑 ≠ 𝑐 ∧ ¬ 𝑑 ≤ 𝑌 ∧ 𝐶 ≤ (𝑐 ∨ 𝑑)))) |
Ref | Expression |
---|---|
dalemswapyzps | ⊢ ((𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓) → ((𝑑 ∈ 𝐴 ∧ 𝑐 ∈ 𝐴) ∧ ¬ 𝑑 ≤ 𝑍 ∧ (𝑐 ≠ 𝑑 ∧ ¬ 𝑐 ≤ 𝑍 ∧ 𝐶 ≤ (𝑑 ∨ 𝑐)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dalem.ps | . . . . 5 ⊢ (𝜓 ↔ ((𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐴) ∧ ¬ 𝑐 ≤ 𝑌 ∧ (𝑑 ≠ 𝑐 ∧ ¬ 𝑑 ≤ 𝑌 ∧ 𝐶 ≤ (𝑐 ∨ 𝑑)))) | |
2 | 1 | dalemddea 35758 | . . . 4 ⊢ (𝜓 → 𝑑 ∈ 𝐴) |
3 | 1 | dalemccea 35757 | . . . 4 ⊢ (𝜓 → 𝑐 ∈ 𝐴) |
4 | 2, 3 | jca 507 | . . 3 ⊢ (𝜓 → (𝑑 ∈ 𝐴 ∧ 𝑐 ∈ 𝐴)) |
5 | 4 | 3ad2ant3 1169 | . 2 ⊢ ((𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓) → (𝑑 ∈ 𝐴 ∧ 𝑐 ∈ 𝐴)) |
6 | 1 | dalem-ddly 35760 | . . . 4 ⊢ (𝜓 → ¬ 𝑑 ≤ 𝑌) |
7 | 6 | 3ad2ant3 1169 | . . 3 ⊢ ((𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓) → ¬ 𝑑 ≤ 𝑌) |
8 | simp2 1171 | . . . 4 ⊢ ((𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓) → 𝑌 = 𝑍) | |
9 | 8 | breq2d 4887 | . . 3 ⊢ ((𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓) → (𝑑 ≤ 𝑌 ↔ 𝑑 ≤ 𝑍)) |
10 | 7, 9 | mtbid 316 | . 2 ⊢ ((𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓) → ¬ 𝑑 ≤ 𝑍) |
11 | 1 | dalemccnedd 35761 | . . . 4 ⊢ (𝜓 → 𝑐 ≠ 𝑑) |
12 | 11 | 3ad2ant3 1169 | . . 3 ⊢ ((𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓) → 𝑐 ≠ 𝑑) |
13 | 1 | dalem-ccly 35759 | . . . . 5 ⊢ (𝜓 → ¬ 𝑐 ≤ 𝑌) |
14 | 13 | 3ad2ant3 1169 | . . . 4 ⊢ ((𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓) → ¬ 𝑐 ≤ 𝑌) |
15 | 8 | breq2d 4887 | . . . 4 ⊢ ((𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓) → (𝑐 ≤ 𝑌 ↔ 𝑐 ≤ 𝑍)) |
16 | 14, 15 | mtbid 316 | . . 3 ⊢ ((𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓) → ¬ 𝑐 ≤ 𝑍) |
17 | 1 | dalemclccjdd 35762 | . . . . 5 ⊢ (𝜓 → 𝐶 ≤ (𝑐 ∨ 𝑑)) |
18 | 17 | 3ad2ant3 1169 | . . . 4 ⊢ ((𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓) → 𝐶 ≤ (𝑐 ∨ 𝑑)) |
19 | dalem.ph | . . . . . . 7 ⊢ (𝜑 ↔ (((𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) ∧ (𝑌 ∈ 𝑂 ∧ 𝑍 ∈ 𝑂) ∧ ((¬ 𝐶 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝐶 ≤ (𝑄 ∨ 𝑅) ∧ ¬ 𝐶 ≤ (𝑅 ∨ 𝑃)) ∧ (¬ 𝐶 ≤ (𝑆 ∨ 𝑇) ∧ ¬ 𝐶 ≤ (𝑇 ∨ 𝑈) ∧ ¬ 𝐶 ≤ (𝑈 ∨ 𝑆)) ∧ (𝐶 ≤ (𝑃 ∨ 𝑆) ∧ 𝐶 ≤ (𝑄 ∨ 𝑇) ∧ 𝐶 ≤ (𝑅 ∨ 𝑈))))) | |
20 | 19 | dalemkehl 35697 | . . . . . 6 ⊢ (𝜑 → 𝐾 ∈ HL) |
21 | 20 | 3ad2ant1 1167 | . . . . 5 ⊢ ((𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓) → 𝐾 ∈ HL) |
22 | 3 | 3ad2ant3 1169 | . . . . 5 ⊢ ((𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓) → 𝑐 ∈ 𝐴) |
23 | 2 | 3ad2ant3 1169 | . . . . 5 ⊢ ((𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓) → 𝑑 ∈ 𝐴) |
24 | dalem.j | . . . . . 6 ⊢ ∨ = (join‘𝐾) | |
25 | dalem.a | . . . . . 6 ⊢ 𝐴 = (Atoms‘𝐾) | |
26 | 24, 25 | hlatjcom 35442 | . . . . 5 ⊢ ((𝐾 ∈ HL ∧ 𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐴) → (𝑐 ∨ 𝑑) = (𝑑 ∨ 𝑐)) |
27 | 21, 22, 23, 26 | syl3anc 1494 | . . . 4 ⊢ ((𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓) → (𝑐 ∨ 𝑑) = (𝑑 ∨ 𝑐)) |
28 | 18, 27 | breqtrd 4901 | . . 3 ⊢ ((𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓) → 𝐶 ≤ (𝑑 ∨ 𝑐)) |
29 | 12, 16, 28 | 3jca 1162 | . 2 ⊢ ((𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓) → (𝑐 ≠ 𝑑 ∧ ¬ 𝑐 ≤ 𝑍 ∧ 𝐶 ≤ (𝑑 ∨ 𝑐))) |
30 | 5, 10, 29 | 3jca 1162 | 1 ⊢ ((𝜑 ∧ 𝑌 = 𝑍 ∧ 𝜓) → ((𝑑 ∈ 𝐴 ∧ 𝑐 ∈ 𝐴) ∧ ¬ 𝑑 ≤ 𝑍 ∧ (𝑐 ≠ 𝑑 ∧ ¬ 𝑐 ≤ 𝑍 ∧ 𝐶 ≤ (𝑑 ∨ 𝑐)))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 198 ∧ wa 386 ∧ w3a 1111 = wceq 1656 ∈ wcel 2164 ≠ wne 2999 class class class wbr 4875 ‘cfv 6127 (class class class)co 6910 Basecbs 16229 lecple 16319 joincjn 17304 Atomscatm 35337 HLchlt 35424 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1894 ax-4 1908 ax-5 2009 ax-6 2075 ax-7 2112 ax-8 2166 ax-9 2173 ax-10 2192 ax-11 2207 ax-12 2220 ax-13 2389 ax-ext 2803 ax-rep 4996 ax-sep 5007 ax-nul 5015 ax-pow 5067 ax-pr 5129 ax-un 7214 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 879 df-3an 1113 df-tru 1660 df-ex 1879 df-nf 1883 df-sb 2068 df-mo 2605 df-eu 2640 df-clab 2812 df-cleq 2818 df-clel 2821 df-nfc 2958 df-ne 3000 df-ral 3122 df-rex 3123 df-reu 3124 df-rab 3126 df-v 3416 df-sbc 3663 df-csb 3758 df-dif 3801 df-un 3803 df-in 3805 df-ss 3812 df-nul 4147 df-if 4309 df-pw 4382 df-sn 4400 df-pr 4402 df-op 4406 df-uni 4661 df-iun 4744 df-br 4876 df-opab 4938 df-mpt 4955 df-id 5252 df-xp 5352 df-rel 5353 df-cnv 5354 df-co 5355 df-dm 5356 df-rn 5357 df-res 5358 df-ima 5359 df-iota 6090 df-fun 6129 df-fn 6130 df-f 6131 df-f1 6132 df-fo 6133 df-f1o 6134 df-fv 6135 df-riota 6871 df-ov 6913 df-oprab 6914 df-lub 17334 df-join 17336 df-lat 17406 df-ats 35341 df-atl 35372 df-cvlat 35396 df-hlat 35425 |
This theorem is referenced by: dalem56 35802 |
Copyright terms: Public domain | W3C validator |