Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dalemswapyzps Structured version   Visualization version   GIF version

Theorem dalemswapyzps 39647
Description: Lemma for dath 39693. Swap the 𝑌 and 𝑍 planes, along with dummy concurrency (center of perspectivity) atoms 𝑐 and 𝑑, to allow reuse of analogous proofs. (Contributed by NM, 17-Aug-2012.)
Hypotheses
Ref Expression
dalem.ph (𝜑 ↔ (((𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (𝑌𝑂𝑍𝑂) ∧ ((¬ 𝐶 (𝑃 𝑄) ∧ ¬ 𝐶 (𝑄 𝑅) ∧ ¬ 𝐶 (𝑅 𝑃)) ∧ (¬ 𝐶 (𝑆 𝑇) ∧ ¬ 𝐶 (𝑇 𝑈) ∧ ¬ 𝐶 (𝑈 𝑆)) ∧ (𝐶 (𝑃 𝑆) ∧ 𝐶 (𝑄 𝑇) ∧ 𝐶 (𝑅 𝑈)))))
dalem.l = (le‘𝐾)
dalem.j = (join‘𝐾)
dalem.a 𝐴 = (Atoms‘𝐾)
dalem.ps (𝜓 ↔ ((𝑐𝐴𝑑𝐴) ∧ ¬ 𝑐 𝑌 ∧ (𝑑𝑐 ∧ ¬ 𝑑 𝑌𝐶 (𝑐 𝑑))))
Assertion
Ref Expression
dalemswapyzps ((𝜑𝑌 = 𝑍𝜓) → ((𝑑𝐴𝑐𝐴) ∧ ¬ 𝑑 𝑍 ∧ (𝑐𝑑 ∧ ¬ 𝑐 𝑍𝐶 (𝑑 𝑐))))

Proof of Theorem dalemswapyzps
StepHypRef Expression
1 dalem.ps . . . . 5 (𝜓 ↔ ((𝑐𝐴𝑑𝐴) ∧ ¬ 𝑐 𝑌 ∧ (𝑑𝑐 ∧ ¬ 𝑑 𝑌𝐶 (𝑐 𝑑))))
21dalemddea 39641 . . . 4 (𝜓𝑑𝐴)
31dalemccea 39640 . . . 4 (𝜓𝑐𝐴)
42, 3jca 511 . . 3 (𝜓 → (𝑑𝐴𝑐𝐴))
543ad2ant3 1135 . 2 ((𝜑𝑌 = 𝑍𝜓) → (𝑑𝐴𝑐𝐴))
61dalem-ddly 39643 . . . 4 (𝜓 → ¬ 𝑑 𝑌)
763ad2ant3 1135 . . 3 ((𝜑𝑌 = 𝑍𝜓) → ¬ 𝑑 𝑌)
8 simp2 1137 . . . 4 ((𝜑𝑌 = 𝑍𝜓) → 𝑌 = 𝑍)
98breq2d 5178 . . 3 ((𝜑𝑌 = 𝑍𝜓) → (𝑑 𝑌𝑑 𝑍))
107, 9mtbid 324 . 2 ((𝜑𝑌 = 𝑍𝜓) → ¬ 𝑑 𝑍)
111dalemccnedd 39644 . . . 4 (𝜓𝑐𝑑)
12113ad2ant3 1135 . . 3 ((𝜑𝑌 = 𝑍𝜓) → 𝑐𝑑)
131dalem-ccly 39642 . . . . 5 (𝜓 → ¬ 𝑐 𝑌)
14133ad2ant3 1135 . . . 4 ((𝜑𝑌 = 𝑍𝜓) → ¬ 𝑐 𝑌)
158breq2d 5178 . . . 4 ((𝜑𝑌 = 𝑍𝜓) → (𝑐 𝑌𝑐 𝑍))
1614, 15mtbid 324 . . 3 ((𝜑𝑌 = 𝑍𝜓) → ¬ 𝑐 𝑍)
171dalemclccjdd 39645 . . . . 5 (𝜓𝐶 (𝑐 𝑑))
18173ad2ant3 1135 . . . 4 ((𝜑𝑌 = 𝑍𝜓) → 𝐶 (𝑐 𝑑))
19 dalem.ph . . . . . . 7 (𝜑 ↔ (((𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (𝑌𝑂𝑍𝑂) ∧ ((¬ 𝐶 (𝑃 𝑄) ∧ ¬ 𝐶 (𝑄 𝑅) ∧ ¬ 𝐶 (𝑅 𝑃)) ∧ (¬ 𝐶 (𝑆 𝑇) ∧ ¬ 𝐶 (𝑇 𝑈) ∧ ¬ 𝐶 (𝑈 𝑆)) ∧ (𝐶 (𝑃 𝑆) ∧ 𝐶 (𝑄 𝑇) ∧ 𝐶 (𝑅 𝑈)))))
2019dalemkehl 39580 . . . . . 6 (𝜑𝐾 ∈ HL)
21203ad2ant1 1133 . . . . 5 ((𝜑𝑌 = 𝑍𝜓) → 𝐾 ∈ HL)
2233ad2ant3 1135 . . . . 5 ((𝜑𝑌 = 𝑍𝜓) → 𝑐𝐴)
2323ad2ant3 1135 . . . . 5 ((𝜑𝑌 = 𝑍𝜓) → 𝑑𝐴)
24 dalem.j . . . . . 6 = (join‘𝐾)
25 dalem.a . . . . . 6 𝐴 = (Atoms‘𝐾)
2624, 25hlatjcom 39324 . . . . 5 ((𝐾 ∈ HL ∧ 𝑐𝐴𝑑𝐴) → (𝑐 𝑑) = (𝑑 𝑐))
2721, 22, 23, 26syl3anc 1371 . . . 4 ((𝜑𝑌 = 𝑍𝜓) → (𝑐 𝑑) = (𝑑 𝑐))
2818, 27breqtrd 5192 . . 3 ((𝜑𝑌 = 𝑍𝜓) → 𝐶 (𝑑 𝑐))
2912, 16, 283jca 1128 . 2 ((𝜑𝑌 = 𝑍𝜓) → (𝑐𝑑 ∧ ¬ 𝑐 𝑍𝐶 (𝑑 𝑐)))
305, 10, 293jca 1128 1 ((𝜑𝑌 = 𝑍𝜓) → ((𝑑𝐴𝑐𝐴) ∧ ¬ 𝑑 𝑍 ∧ (𝑐𝑑 ∧ ¬ 𝑐 𝑍𝐶 (𝑑 𝑐))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1087   = wceq 1537  wcel 2108  wne 2946   class class class wbr 5166  cfv 6573  (class class class)co 7448  Basecbs 17258  lecple 17318  joincjn 18381  Atomscatm 39219  HLchlt 39306
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-lub 18416  df-join 18418  df-lat 18502  df-ats 39223  df-atl 39254  df-cvlat 39278  df-hlat 39307
This theorem is referenced by:  dalem56  39685
  Copyright terms: Public domain W3C validator