Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > necomd | Structured version Visualization version GIF version |
Description: Deduction from commutative law for inequality. (Contributed by NM, 12-Feb-2008.) |
Ref | Expression |
---|---|
necomd.1 | ⊢ (𝜑 → 𝐴 ≠ 𝐵) |
Ref | Expression |
---|---|
necomd | ⊢ (𝜑 → 𝐵 ≠ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | necomd.1 | . 2 ⊢ (𝜑 → 𝐴 ≠ 𝐵) | |
2 | necom 2997 | . 2 ⊢ (𝐴 ≠ 𝐵 ↔ 𝐵 ≠ 𝐴) | |
3 | 1, 2 | sylib 221 | 1 ⊢ (𝜑 → 𝐵 ≠ 𝐴) |
Copyright terms: Public domain | W3C validator |