Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dath Structured version   Visualization version   GIF version

Theorem dath 38595
Description: Desargues's theorem of projective geometry (proved for a Hilbert lattice). Assume each triple of atoms (points) 𝑃𝑄𝑅 and π‘†π‘‡π‘ˆ forms a triangle (i.e. determines a plane). Assume that lines 𝑃𝑆, 𝑄𝑇, and π‘…π‘ˆ meet at a "center of perspectivity" 𝐢. (We also assume that 𝐢 is not on any of the 6 lines forming the two triangles.) Then the atoms 𝐷 = (𝑃 ∨ 𝑄) ∧ (𝑆 ∨ 𝑇), 𝐸 = (𝑄 ∨ 𝑅) ∧ (𝑇 ∨ π‘ˆ), 𝐹 = (𝑅 ∨ 𝑃) ∧ (π‘ˆ ∨ 𝑆) are colinear, forming an "axis of perspectivity".

Our proof roughly follows Theorem 2.7.1, p. 78 in Beutelspacher and Rosenbaum, Projective Geometry: From Foundations to Applications, Cambridge University Press (1988). Unlike them, we do not assume that 𝐢 is an atom to make this theorem slightly more general for easier future use. However, we prove that 𝐢 must be an atom in dalemcea 38519.

For a visual demonstration, see the "Desargues's theorem" applet at http://www.dynamicgeometry.com/JavaSketchpad/Gallery.html 38519. The points I, J, and K there define the axis of perspectivity.

See Theorems dalaw 38745 for Desargues's law, which eliminates all of the preconditions on the atoms except for central perspectivity. This is Metamath 100 proof #87. (Contributed by NM, 20-Aug-2012.)

Hypotheses
Ref Expression
dath.b 𝐡 = (Baseβ€˜πΎ)
dath.l ≀ = (leβ€˜πΎ)
dath.j ∨ = (joinβ€˜πΎ)
dath.a 𝐴 = (Atomsβ€˜πΎ)
dath.m ∧ = (meetβ€˜πΎ)
dath.o 𝑂 = (LPlanesβ€˜πΎ)
dath.d 𝐷 = ((𝑃 ∨ 𝑄) ∧ (𝑆 ∨ 𝑇))
dath.e 𝐸 = ((𝑄 ∨ 𝑅) ∧ (𝑇 ∨ π‘ˆ))
dath.f 𝐹 = ((𝑅 ∨ 𝑃) ∧ (π‘ˆ ∨ 𝑆))
Assertion
Ref Expression
dath ((((𝐾 ∈ HL ∧ 𝐢 ∈ 𝐡) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ π‘ˆ ∈ 𝐴)) ∧ (((𝑃 ∨ 𝑄) ∨ 𝑅) ∈ 𝑂 ∧ ((𝑆 ∨ 𝑇) ∨ π‘ˆ) ∈ 𝑂) ∧ ((Β¬ 𝐢 ≀ (𝑃 ∨ 𝑄) ∧ Β¬ 𝐢 ≀ (𝑄 ∨ 𝑅) ∧ Β¬ 𝐢 ≀ (𝑅 ∨ 𝑃)) ∧ (Β¬ 𝐢 ≀ (𝑆 ∨ 𝑇) ∧ Β¬ 𝐢 ≀ (𝑇 ∨ π‘ˆ) ∧ Β¬ 𝐢 ≀ (π‘ˆ ∨ 𝑆)) ∧ (𝐢 ≀ (𝑃 ∨ 𝑆) ∧ 𝐢 ≀ (𝑄 ∨ 𝑇) ∧ 𝐢 ≀ (𝑅 ∨ π‘ˆ)))) β†’ 𝐹 ≀ (𝐷 ∨ 𝐸))

Proof of Theorem dath
StepHypRef Expression
1 dath.b . . . . . 6 𝐡 = (Baseβ€˜πΎ)
21eleq2i 2825 . . . . 5 (𝐢 ∈ 𝐡 ↔ 𝐢 ∈ (Baseβ€˜πΎ))
32anbi2i 623 . . . 4 ((𝐾 ∈ HL ∧ 𝐢 ∈ 𝐡) ↔ (𝐾 ∈ HL ∧ 𝐢 ∈ (Baseβ€˜πΎ)))
433anbi1i 1157 . . 3 (((𝐾 ∈ HL ∧ 𝐢 ∈ 𝐡) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ π‘ˆ ∈ 𝐴)) ↔ ((𝐾 ∈ HL ∧ 𝐢 ∈ (Baseβ€˜πΎ)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ π‘ˆ ∈ 𝐴)))
543anbi1i 1157 . 2 ((((𝐾 ∈ HL ∧ 𝐢 ∈ 𝐡) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ π‘ˆ ∈ 𝐴)) ∧ (((𝑃 ∨ 𝑄) ∨ 𝑅) ∈ 𝑂 ∧ ((𝑆 ∨ 𝑇) ∨ π‘ˆ) ∈ 𝑂) ∧ ((Β¬ 𝐢 ≀ (𝑃 ∨ 𝑄) ∧ Β¬ 𝐢 ≀ (𝑄 ∨ 𝑅) ∧ Β¬ 𝐢 ≀ (𝑅 ∨ 𝑃)) ∧ (Β¬ 𝐢 ≀ (𝑆 ∨ 𝑇) ∧ Β¬ 𝐢 ≀ (𝑇 ∨ π‘ˆ) ∧ Β¬ 𝐢 ≀ (π‘ˆ ∨ 𝑆)) ∧ (𝐢 ≀ (𝑃 ∨ 𝑆) ∧ 𝐢 ≀ (𝑄 ∨ 𝑇) ∧ 𝐢 ≀ (𝑅 ∨ π‘ˆ)))) ↔ (((𝐾 ∈ HL ∧ 𝐢 ∈ (Baseβ€˜πΎ)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ π‘ˆ ∈ 𝐴)) ∧ (((𝑃 ∨ 𝑄) ∨ 𝑅) ∈ 𝑂 ∧ ((𝑆 ∨ 𝑇) ∨ π‘ˆ) ∈ 𝑂) ∧ ((Β¬ 𝐢 ≀ (𝑃 ∨ 𝑄) ∧ Β¬ 𝐢 ≀ (𝑄 ∨ 𝑅) ∧ Β¬ 𝐢 ≀ (𝑅 ∨ 𝑃)) ∧ (Β¬ 𝐢 ≀ (𝑆 ∨ 𝑇) ∧ Β¬ 𝐢 ≀ (𝑇 ∨ π‘ˆ) ∧ Β¬ 𝐢 ≀ (π‘ˆ ∨ 𝑆)) ∧ (𝐢 ≀ (𝑃 ∨ 𝑆) ∧ 𝐢 ≀ (𝑄 ∨ 𝑇) ∧ 𝐢 ≀ (𝑅 ∨ π‘ˆ)))))
6 dath.l . 2 ≀ = (leβ€˜πΎ)
7 dath.j . 2 ∨ = (joinβ€˜πΎ)
8 dath.a . 2 𝐴 = (Atomsβ€˜πΎ)
9 dath.m . 2 ∧ = (meetβ€˜πΎ)
10 dath.o . 2 𝑂 = (LPlanesβ€˜πΎ)
11 eqid 2732 . 2 ((𝑃 ∨ 𝑄) ∨ 𝑅) = ((𝑃 ∨ 𝑄) ∨ 𝑅)
12 eqid 2732 . 2 ((𝑆 ∨ 𝑇) ∨ π‘ˆ) = ((𝑆 ∨ 𝑇) ∨ π‘ˆ)
13 dath.d . 2 𝐷 = ((𝑃 ∨ 𝑄) ∧ (𝑆 ∨ 𝑇))
14 dath.e . 2 𝐸 = ((𝑄 ∨ 𝑅) ∧ (𝑇 ∨ π‘ˆ))
15 dath.f . 2 𝐹 = ((𝑅 ∨ 𝑃) ∧ (π‘ˆ ∨ 𝑆))
165, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15dalem63 38594 1 ((((𝐾 ∈ HL ∧ 𝐢 ∈ 𝐡) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ π‘ˆ ∈ 𝐴)) ∧ (((𝑃 ∨ 𝑄) ∨ 𝑅) ∈ 𝑂 ∧ ((𝑆 ∨ 𝑇) ∨ π‘ˆ) ∈ 𝑂) ∧ ((Β¬ 𝐢 ≀ (𝑃 ∨ 𝑄) ∧ Β¬ 𝐢 ≀ (𝑄 ∨ 𝑅) ∧ Β¬ 𝐢 ≀ (𝑅 ∨ 𝑃)) ∧ (Β¬ 𝐢 ≀ (𝑆 ∨ 𝑇) ∧ Β¬ 𝐢 ≀ (𝑇 ∨ π‘ˆ) ∧ Β¬ 𝐢 ≀ (π‘ˆ ∨ 𝑆)) ∧ (𝐢 ≀ (𝑃 ∨ 𝑆) ∧ 𝐢 ≀ (𝑄 ∨ 𝑇) ∧ 𝐢 ≀ (𝑅 ∨ π‘ˆ)))) β†’ 𝐹 ≀ (𝐷 ∨ 𝐸))
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   β†’ wi 4   ∧ wa 396   ∧ w3a 1087   = wceq 1541   ∈ wcel 2106   class class class wbr 5147  β€˜cfv 6540  (class class class)co 7405  Basecbs 17140  lecple 17200  joincjn 18260  meetcmee 18261  Atomscatm 38121  HLchlt 38208  LPlanesclpl 38351
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-riota 7361  df-ov 7408  df-oprab 7409  df-proset 18244  df-poset 18262  df-plt 18279  df-lub 18295  df-glb 18296  df-join 18297  df-meet 18298  df-p0 18374  df-p1 18375  df-lat 18381  df-clat 18448  df-oposet 38034  df-ol 38036  df-oml 38037  df-covers 38124  df-ats 38125  df-atl 38156  df-cvlat 38180  df-hlat 38209  df-llines 38357  df-lplanes 38358  df-lvols 38359
This theorem is referenced by:  dath2  38596
  Copyright terms: Public domain W3C validator