![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dath | Structured version Visualization version GIF version |
Description: Desargues's theorem of
projective geometry (proved for a Hilbert
lattice). Assume each triple of atoms (points) 𝑃𝑄𝑅 and 𝑆𝑇𝑈
forms a triangle (i.e. determines a plane). Assume that lines 𝑃𝑆,
𝑄𝑇, and 𝑅𝑈 meet at a "center of
perspectivity" 𝐶. (We
also assume that 𝐶 is not on any of the 6 lines forming
the two
triangles.) Then the atoms 𝐷 = (𝑃 ∨ 𝑄) ∧ (𝑆 ∨ 𝑇),
𝐸 =
(𝑄 ∨ 𝑅) ∧ (𝑇 ∨ 𝑈),
𝐹 =
(𝑅 ∨ 𝑃) ∧ (𝑈 ∨ 𝑆) are colinear, forming an "axis
of
perspectivity".
Our proof roughly follows Theorem 2.7.1, p. 78 in Beutelspacher and Rosenbaum, Projective Geometry: From Foundations to Applications, Cambridge University Press (1988). Unlike them, we do not assume that 𝐶 is an atom to make this theorem slightly more general for easier future use. However, we prove that 𝐶 must be an atom in dalemcea 38469. For a visual demonstration, see the "Desargues's theorem" applet at http://www.dynamicgeometry.com/JavaSketchpad/Gallery.html 38469. The points I, J, and K there define the axis of perspectivity. See Theorems dalaw 38695 for Desargues's law, which eliminates all of the preconditions on the atoms except for central perspectivity. This is Metamath 100 proof #87. (Contributed by NM, 20-Aug-2012.) |
Ref | Expression |
---|---|
dath.b | ⊢ 𝐵 = (Base‘𝐾) |
dath.l | ⊢ ≤ = (le‘𝐾) |
dath.j | ⊢ ∨ = (join‘𝐾) |
dath.a | ⊢ 𝐴 = (Atoms‘𝐾) |
dath.m | ⊢ ∧ = (meet‘𝐾) |
dath.o | ⊢ 𝑂 = (LPlanes‘𝐾) |
dath.d | ⊢ 𝐷 = ((𝑃 ∨ 𝑄) ∧ (𝑆 ∨ 𝑇)) |
dath.e | ⊢ 𝐸 = ((𝑄 ∨ 𝑅) ∧ (𝑇 ∨ 𝑈)) |
dath.f | ⊢ 𝐹 = ((𝑅 ∨ 𝑃) ∧ (𝑈 ∨ 𝑆)) |
Ref | Expression |
---|---|
dath | ⊢ ((((𝐾 ∈ HL ∧ 𝐶 ∈ 𝐵) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) ∧ (((𝑃 ∨ 𝑄) ∨ 𝑅) ∈ 𝑂 ∧ ((𝑆 ∨ 𝑇) ∨ 𝑈) ∈ 𝑂) ∧ ((¬ 𝐶 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝐶 ≤ (𝑄 ∨ 𝑅) ∧ ¬ 𝐶 ≤ (𝑅 ∨ 𝑃)) ∧ (¬ 𝐶 ≤ (𝑆 ∨ 𝑇) ∧ ¬ 𝐶 ≤ (𝑇 ∨ 𝑈) ∧ ¬ 𝐶 ≤ (𝑈 ∨ 𝑆)) ∧ (𝐶 ≤ (𝑃 ∨ 𝑆) ∧ 𝐶 ≤ (𝑄 ∨ 𝑇) ∧ 𝐶 ≤ (𝑅 ∨ 𝑈)))) → 𝐹 ≤ (𝐷 ∨ 𝐸)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dath.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝐾) | |
2 | 1 | eleq2i 2826 | . . . . 5 ⊢ (𝐶 ∈ 𝐵 ↔ 𝐶 ∈ (Base‘𝐾)) |
3 | 2 | anbi2i 624 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝐶 ∈ 𝐵) ↔ (𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾))) |
4 | 3 | 3anbi1i 1158 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝐶 ∈ 𝐵) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) ↔ ((𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴))) |
5 | 4 | 3anbi1i 1158 | . 2 ⊢ ((((𝐾 ∈ HL ∧ 𝐶 ∈ 𝐵) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) ∧ (((𝑃 ∨ 𝑄) ∨ 𝑅) ∈ 𝑂 ∧ ((𝑆 ∨ 𝑇) ∨ 𝑈) ∈ 𝑂) ∧ ((¬ 𝐶 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝐶 ≤ (𝑄 ∨ 𝑅) ∧ ¬ 𝐶 ≤ (𝑅 ∨ 𝑃)) ∧ (¬ 𝐶 ≤ (𝑆 ∨ 𝑇) ∧ ¬ 𝐶 ≤ (𝑇 ∨ 𝑈) ∧ ¬ 𝐶 ≤ (𝑈 ∨ 𝑆)) ∧ (𝐶 ≤ (𝑃 ∨ 𝑆) ∧ 𝐶 ≤ (𝑄 ∨ 𝑇) ∧ 𝐶 ≤ (𝑅 ∨ 𝑈)))) ↔ (((𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) ∧ (((𝑃 ∨ 𝑄) ∨ 𝑅) ∈ 𝑂 ∧ ((𝑆 ∨ 𝑇) ∨ 𝑈) ∈ 𝑂) ∧ ((¬ 𝐶 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝐶 ≤ (𝑄 ∨ 𝑅) ∧ ¬ 𝐶 ≤ (𝑅 ∨ 𝑃)) ∧ (¬ 𝐶 ≤ (𝑆 ∨ 𝑇) ∧ ¬ 𝐶 ≤ (𝑇 ∨ 𝑈) ∧ ¬ 𝐶 ≤ (𝑈 ∨ 𝑆)) ∧ (𝐶 ≤ (𝑃 ∨ 𝑆) ∧ 𝐶 ≤ (𝑄 ∨ 𝑇) ∧ 𝐶 ≤ (𝑅 ∨ 𝑈))))) |
6 | dath.l | . 2 ⊢ ≤ = (le‘𝐾) | |
7 | dath.j | . 2 ⊢ ∨ = (join‘𝐾) | |
8 | dath.a | . 2 ⊢ 𝐴 = (Atoms‘𝐾) | |
9 | dath.m | . 2 ⊢ ∧ = (meet‘𝐾) | |
10 | dath.o | . 2 ⊢ 𝑂 = (LPlanes‘𝐾) | |
11 | eqid 2733 | . 2 ⊢ ((𝑃 ∨ 𝑄) ∨ 𝑅) = ((𝑃 ∨ 𝑄) ∨ 𝑅) | |
12 | eqid 2733 | . 2 ⊢ ((𝑆 ∨ 𝑇) ∨ 𝑈) = ((𝑆 ∨ 𝑇) ∨ 𝑈) | |
13 | dath.d | . 2 ⊢ 𝐷 = ((𝑃 ∨ 𝑄) ∧ (𝑆 ∨ 𝑇)) | |
14 | dath.e | . 2 ⊢ 𝐸 = ((𝑄 ∨ 𝑅) ∧ (𝑇 ∨ 𝑈)) | |
15 | dath.f | . 2 ⊢ 𝐹 = ((𝑅 ∨ 𝑃) ∧ (𝑈 ∨ 𝑆)) | |
16 | 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 | dalem63 38544 | 1 ⊢ ((((𝐾 ∈ HL ∧ 𝐶 ∈ 𝐵) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) ∧ (((𝑃 ∨ 𝑄) ∨ 𝑅) ∈ 𝑂 ∧ ((𝑆 ∨ 𝑇) ∨ 𝑈) ∈ 𝑂) ∧ ((¬ 𝐶 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝐶 ≤ (𝑄 ∨ 𝑅) ∧ ¬ 𝐶 ≤ (𝑅 ∨ 𝑃)) ∧ (¬ 𝐶 ≤ (𝑆 ∨ 𝑇) ∧ ¬ 𝐶 ≤ (𝑇 ∨ 𝑈) ∧ ¬ 𝐶 ≤ (𝑈 ∨ 𝑆)) ∧ (𝐶 ≤ (𝑃 ∨ 𝑆) ∧ 𝐶 ≤ (𝑄 ∨ 𝑇) ∧ 𝐶 ≤ (𝑅 ∨ 𝑈)))) → 𝐹 ≤ (𝐷 ∨ 𝐸)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 397 ∧ w3a 1088 = wceq 1542 ∈ wcel 2107 class class class wbr 5147 ‘cfv 6540 (class class class)co 7404 Basecbs 17140 lecple 17200 joincjn 18260 meetcmee 18261 Atomscatm 38071 HLchlt 38158 LPlanesclpl 38301 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7720 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-ral 3063 df-rex 3072 df-rmo 3377 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5573 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-riota 7360 df-ov 7407 df-oprab 7408 df-proset 18244 df-poset 18262 df-plt 18279 df-lub 18295 df-glb 18296 df-join 18297 df-meet 18298 df-p0 18374 df-p1 18375 df-lat 18381 df-clat 18448 df-oposet 37984 df-ol 37986 df-oml 37987 df-covers 38074 df-ats 38075 df-atl 38106 df-cvlat 38130 df-hlat 38159 df-llines 38307 df-lplanes 38308 df-lvols 38309 |
This theorem is referenced by: dath2 38546 |
Copyright terms: Public domain | W3C validator |