Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dath Structured version   Visualization version   GIF version

Theorem dath 37405
Description: Desargues's theorem of projective geometry (proved for a Hilbert lattice). Assume each triple of atoms (points) 𝑃𝑄𝑅 and 𝑆𝑇𝑈 forms a triangle (i.e. determines a plane). Assume that lines 𝑃𝑆, 𝑄𝑇, and 𝑅𝑈 meet at a "center of perspectivity" 𝐶. (We also assume that 𝐶 is not on any of the 6 lines forming the two triangles.) Then the atoms 𝐷 = (𝑃 𝑄) (𝑆 𝑇), 𝐸 = (𝑄 𝑅) (𝑇 𝑈), 𝐹 = (𝑅 𝑃) (𝑈 𝑆) are colinear, forming an "axis of perspectivity".

Our proof roughly follows Theorem 2.7.1, p. 78 in Beutelspacher and Rosenbaum, Projective Geometry: From Foundations to Applications, Cambridge University Press (1988). Unlike them, we do not assume that 𝐶 is an atom to make this theorem slightly more general for easier future use. However, we prove that 𝐶 must be an atom in dalemcea 37329.

For a visual demonstration, see the "Desargues's theorem" applet at http://www.dynamicgeometry.com/JavaSketchpad/Gallery.html 37329. The points I, J, and K there define the axis of perspectivity.

See Theorems dalaw 37555 for Desargues's law, which eliminates all of the preconditions on the atoms except for central perspectivity. This is Metamath 100 proof #87. (Contributed by NM, 20-Aug-2012.)

Hypotheses
Ref Expression
dath.b 𝐵 = (Base‘𝐾)
dath.l = (le‘𝐾)
dath.j = (join‘𝐾)
dath.a 𝐴 = (Atoms‘𝐾)
dath.m = (meet‘𝐾)
dath.o 𝑂 = (LPlanes‘𝐾)
dath.d 𝐷 = ((𝑃 𝑄) (𝑆 𝑇))
dath.e 𝐸 = ((𝑄 𝑅) (𝑇 𝑈))
dath.f 𝐹 = ((𝑅 𝑃) (𝑈 𝑆))
Assertion
Ref Expression
dath ((((𝐾 ∈ HL ∧ 𝐶𝐵) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (((𝑃 𝑄) 𝑅) ∈ 𝑂 ∧ ((𝑆 𝑇) 𝑈) ∈ 𝑂) ∧ ((¬ 𝐶 (𝑃 𝑄) ∧ ¬ 𝐶 (𝑄 𝑅) ∧ ¬ 𝐶 (𝑅 𝑃)) ∧ (¬ 𝐶 (𝑆 𝑇) ∧ ¬ 𝐶 (𝑇 𝑈) ∧ ¬ 𝐶 (𝑈 𝑆)) ∧ (𝐶 (𝑃 𝑆) ∧ 𝐶 (𝑄 𝑇) ∧ 𝐶 (𝑅 𝑈)))) → 𝐹 (𝐷 𝐸))

Proof of Theorem dath
StepHypRef Expression
1 dath.b . . . . . 6 𝐵 = (Base‘𝐾)
21eleq2i 2825 . . . . 5 (𝐶𝐵𝐶 ∈ (Base‘𝐾))
32anbi2i 626 . . . 4 ((𝐾 ∈ HL ∧ 𝐶𝐵) ↔ (𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾)))
433anbi1i 1158 . . 3 (((𝐾 ∈ HL ∧ 𝐶𝐵) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ↔ ((𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)))
543anbi1i 1158 . 2 ((((𝐾 ∈ HL ∧ 𝐶𝐵) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (((𝑃 𝑄) 𝑅) ∈ 𝑂 ∧ ((𝑆 𝑇) 𝑈) ∈ 𝑂) ∧ ((¬ 𝐶 (𝑃 𝑄) ∧ ¬ 𝐶 (𝑄 𝑅) ∧ ¬ 𝐶 (𝑅 𝑃)) ∧ (¬ 𝐶 (𝑆 𝑇) ∧ ¬ 𝐶 (𝑇 𝑈) ∧ ¬ 𝐶 (𝑈 𝑆)) ∧ (𝐶 (𝑃 𝑆) ∧ 𝐶 (𝑄 𝑇) ∧ 𝐶 (𝑅 𝑈)))) ↔ (((𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (((𝑃 𝑄) 𝑅) ∈ 𝑂 ∧ ((𝑆 𝑇) 𝑈) ∈ 𝑂) ∧ ((¬ 𝐶 (𝑃 𝑄) ∧ ¬ 𝐶 (𝑄 𝑅) ∧ ¬ 𝐶 (𝑅 𝑃)) ∧ (¬ 𝐶 (𝑆 𝑇) ∧ ¬ 𝐶 (𝑇 𝑈) ∧ ¬ 𝐶 (𝑈 𝑆)) ∧ (𝐶 (𝑃 𝑆) ∧ 𝐶 (𝑄 𝑇) ∧ 𝐶 (𝑅 𝑈)))))
6 dath.l . 2 = (le‘𝐾)
7 dath.j . 2 = (join‘𝐾)
8 dath.a . 2 𝐴 = (Atoms‘𝐾)
9 dath.m . 2 = (meet‘𝐾)
10 dath.o . 2 𝑂 = (LPlanes‘𝐾)
11 eqid 2739 . 2 ((𝑃 𝑄) 𝑅) = ((𝑃 𝑄) 𝑅)
12 eqid 2739 . 2 ((𝑆 𝑇) 𝑈) = ((𝑆 𝑇) 𝑈)
13 dath.d . 2 𝐷 = ((𝑃 𝑄) (𝑆 𝑇))
14 dath.e . 2 𝐸 = ((𝑄 𝑅) (𝑇 𝑈))
15 dath.f . 2 𝐹 = ((𝑅 𝑃) (𝑈 𝑆))
165, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15dalem63 37404 1 ((((𝐾 ∈ HL ∧ 𝐶𝐵) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (((𝑃 𝑄) 𝑅) ∈ 𝑂 ∧ ((𝑆 𝑇) 𝑈) ∈ 𝑂) ∧ ((¬ 𝐶 (𝑃 𝑄) ∧ ¬ 𝐶 (𝑄 𝑅) ∧ ¬ 𝐶 (𝑅 𝑃)) ∧ (¬ 𝐶 (𝑆 𝑇) ∧ ¬ 𝐶 (𝑇 𝑈) ∧ ¬ 𝐶 (𝑈 𝑆)) ∧ (𝐶 (𝑃 𝑆) ∧ 𝐶 (𝑄 𝑇) ∧ 𝐶 (𝑅 𝑈)))) → 𝐹 (𝐷 𝐸))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 399  w3a 1088   = wceq 1542  wcel 2114   class class class wbr 5040  cfv 6349  (class class class)co 7182  Basecbs 16598  lecple 16687  joincjn 17682  meetcmee 17683  Atomscatm 36932  HLchlt 37019  LPlanesclpl 37161
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2020  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2162  ax-12 2179  ax-ext 2711  ax-rep 5164  ax-sep 5177  ax-nul 5184  ax-pow 5242  ax-pr 5306  ax-un 7491
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2075  df-mo 2541  df-eu 2571  df-clab 2718  df-cleq 2731  df-clel 2812  df-nfc 2882  df-ne 2936  df-ral 3059  df-rex 3060  df-reu 3061  df-rab 3063  df-v 3402  df-sbc 3686  df-csb 3801  df-dif 3856  df-un 3858  df-in 3860  df-ss 3870  df-nul 4222  df-if 4425  df-pw 4500  df-sn 4527  df-pr 4529  df-op 4533  df-uni 4807  df-iun 4893  df-br 5041  df-opab 5103  df-mpt 5121  df-id 5439  df-xp 5541  df-rel 5542  df-cnv 5543  df-co 5544  df-dm 5545  df-rn 5546  df-res 5547  df-ima 5548  df-iota 6307  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-riota 7139  df-ov 7185  df-oprab 7186  df-proset 17666  df-poset 17684  df-plt 17696  df-lub 17712  df-glb 17713  df-join 17714  df-meet 17715  df-p0 17777  df-p1 17778  df-lat 17784  df-clat 17846  df-oposet 36845  df-ol 36847  df-oml 36848  df-covers 36935  df-ats 36936  df-atl 36967  df-cvlat 36991  df-hlat 37020  df-llines 37167  df-lplanes 37168  df-lvols 37169
This theorem is referenced by:  dath2  37406
  Copyright terms: Public domain W3C validator