Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > dath | Structured version Visualization version GIF version |
Description: Desargues's theorem of
projective geometry (proved for a Hilbert
lattice). Assume each triple of atoms (points) 𝑃𝑄𝑅 and 𝑆𝑇𝑈
forms a triangle (i.e. determines a plane). Assume that lines 𝑃𝑆,
𝑄𝑇, and 𝑅𝑈 meet at a "center of
perspectivity" 𝐶. (We
also assume that 𝐶 is not on any of the 6 lines forming
the two
triangles.) Then the atoms 𝐷 = (𝑃 ∨ 𝑄) ∧ (𝑆 ∨ 𝑇),
𝐸 =
(𝑄 ∨ 𝑅) ∧ (𝑇 ∨ 𝑈),
𝐹 =
(𝑅 ∨ 𝑃) ∧ (𝑈 ∨ 𝑆) are colinear, forming an "axis
of
perspectivity".
Our proof roughly follows Theorem 2.7.1, p. 78 in Beutelspacher and Rosenbaum, Projective Geometry: From Foundations to Applications, Cambridge University Press (1988). Unlike them, we do not assume that 𝐶 is an atom to make this theorem slightly more general for easier future use. However, we prove that 𝐶 must be an atom in dalemcea 37681. For a visual demonstration, see the "Desargues's theorem" applet at http://www.dynamicgeometry.com/JavaSketchpad/Gallery.html 37681. The points I, J, and K there define the axis of perspectivity. See Theorems dalaw 37907 for Desargues's law, which eliminates all of the preconditions on the atoms except for central perspectivity. This is Metamath 100 proof #87. (Contributed by NM, 20-Aug-2012.) |
Ref | Expression |
---|---|
dath.b | ⊢ 𝐵 = (Base‘𝐾) |
dath.l | ⊢ ≤ = (le‘𝐾) |
dath.j | ⊢ ∨ = (join‘𝐾) |
dath.a | ⊢ 𝐴 = (Atoms‘𝐾) |
dath.m | ⊢ ∧ = (meet‘𝐾) |
dath.o | ⊢ 𝑂 = (LPlanes‘𝐾) |
dath.d | ⊢ 𝐷 = ((𝑃 ∨ 𝑄) ∧ (𝑆 ∨ 𝑇)) |
dath.e | ⊢ 𝐸 = ((𝑄 ∨ 𝑅) ∧ (𝑇 ∨ 𝑈)) |
dath.f | ⊢ 𝐹 = ((𝑅 ∨ 𝑃) ∧ (𝑈 ∨ 𝑆)) |
Ref | Expression |
---|---|
dath | ⊢ ((((𝐾 ∈ HL ∧ 𝐶 ∈ 𝐵) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) ∧ (((𝑃 ∨ 𝑄) ∨ 𝑅) ∈ 𝑂 ∧ ((𝑆 ∨ 𝑇) ∨ 𝑈) ∈ 𝑂) ∧ ((¬ 𝐶 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝐶 ≤ (𝑄 ∨ 𝑅) ∧ ¬ 𝐶 ≤ (𝑅 ∨ 𝑃)) ∧ (¬ 𝐶 ≤ (𝑆 ∨ 𝑇) ∧ ¬ 𝐶 ≤ (𝑇 ∨ 𝑈) ∧ ¬ 𝐶 ≤ (𝑈 ∨ 𝑆)) ∧ (𝐶 ≤ (𝑃 ∨ 𝑆) ∧ 𝐶 ≤ (𝑄 ∨ 𝑇) ∧ 𝐶 ≤ (𝑅 ∨ 𝑈)))) → 𝐹 ≤ (𝐷 ∨ 𝐸)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dath.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝐾) | |
2 | 1 | eleq2i 2831 | . . . . 5 ⊢ (𝐶 ∈ 𝐵 ↔ 𝐶 ∈ (Base‘𝐾)) |
3 | 2 | anbi2i 623 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝐶 ∈ 𝐵) ↔ (𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾))) |
4 | 3 | 3anbi1i 1156 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝐶 ∈ 𝐵) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) ↔ ((𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴))) |
5 | 4 | 3anbi1i 1156 | . 2 ⊢ ((((𝐾 ∈ HL ∧ 𝐶 ∈ 𝐵) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) ∧ (((𝑃 ∨ 𝑄) ∨ 𝑅) ∈ 𝑂 ∧ ((𝑆 ∨ 𝑇) ∨ 𝑈) ∈ 𝑂) ∧ ((¬ 𝐶 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝐶 ≤ (𝑄 ∨ 𝑅) ∧ ¬ 𝐶 ≤ (𝑅 ∨ 𝑃)) ∧ (¬ 𝐶 ≤ (𝑆 ∨ 𝑇) ∧ ¬ 𝐶 ≤ (𝑇 ∨ 𝑈) ∧ ¬ 𝐶 ≤ (𝑈 ∨ 𝑆)) ∧ (𝐶 ≤ (𝑃 ∨ 𝑆) ∧ 𝐶 ≤ (𝑄 ∨ 𝑇) ∧ 𝐶 ≤ (𝑅 ∨ 𝑈)))) ↔ (((𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) ∧ (((𝑃 ∨ 𝑄) ∨ 𝑅) ∈ 𝑂 ∧ ((𝑆 ∨ 𝑇) ∨ 𝑈) ∈ 𝑂) ∧ ((¬ 𝐶 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝐶 ≤ (𝑄 ∨ 𝑅) ∧ ¬ 𝐶 ≤ (𝑅 ∨ 𝑃)) ∧ (¬ 𝐶 ≤ (𝑆 ∨ 𝑇) ∧ ¬ 𝐶 ≤ (𝑇 ∨ 𝑈) ∧ ¬ 𝐶 ≤ (𝑈 ∨ 𝑆)) ∧ (𝐶 ≤ (𝑃 ∨ 𝑆) ∧ 𝐶 ≤ (𝑄 ∨ 𝑇) ∧ 𝐶 ≤ (𝑅 ∨ 𝑈))))) |
6 | dath.l | . 2 ⊢ ≤ = (le‘𝐾) | |
7 | dath.j | . 2 ⊢ ∨ = (join‘𝐾) | |
8 | dath.a | . 2 ⊢ 𝐴 = (Atoms‘𝐾) | |
9 | dath.m | . 2 ⊢ ∧ = (meet‘𝐾) | |
10 | dath.o | . 2 ⊢ 𝑂 = (LPlanes‘𝐾) | |
11 | eqid 2739 | . 2 ⊢ ((𝑃 ∨ 𝑄) ∨ 𝑅) = ((𝑃 ∨ 𝑄) ∨ 𝑅) | |
12 | eqid 2739 | . 2 ⊢ ((𝑆 ∨ 𝑇) ∨ 𝑈) = ((𝑆 ∨ 𝑇) ∨ 𝑈) | |
13 | dath.d | . 2 ⊢ 𝐷 = ((𝑃 ∨ 𝑄) ∧ (𝑆 ∨ 𝑇)) | |
14 | dath.e | . 2 ⊢ 𝐸 = ((𝑄 ∨ 𝑅) ∧ (𝑇 ∨ 𝑈)) | |
15 | dath.f | . 2 ⊢ 𝐹 = ((𝑅 ∨ 𝑃) ∧ (𝑈 ∨ 𝑆)) | |
16 | 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 | dalem63 37756 | 1 ⊢ ((((𝐾 ∈ HL ∧ 𝐶 ∈ 𝐵) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) ∧ (((𝑃 ∨ 𝑄) ∨ 𝑅) ∈ 𝑂 ∧ ((𝑆 ∨ 𝑇) ∨ 𝑈) ∈ 𝑂) ∧ ((¬ 𝐶 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝐶 ≤ (𝑄 ∨ 𝑅) ∧ ¬ 𝐶 ≤ (𝑅 ∨ 𝑃)) ∧ (¬ 𝐶 ≤ (𝑆 ∨ 𝑇) ∧ ¬ 𝐶 ≤ (𝑇 ∨ 𝑈) ∧ ¬ 𝐶 ≤ (𝑈 ∨ 𝑆)) ∧ (𝐶 ≤ (𝑃 ∨ 𝑆) ∧ 𝐶 ≤ (𝑄 ∨ 𝑇) ∧ 𝐶 ≤ (𝑅 ∨ 𝑈)))) → 𝐹 ≤ (𝐷 ∨ 𝐸)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 396 ∧ w3a 1086 = wceq 1539 ∈ wcel 2107 class class class wbr 5075 ‘cfv 6437 (class class class)co 7284 Basecbs 16921 lecple 16978 joincjn 18038 meetcmee 18039 Atomscatm 37284 HLchlt 37371 LPlanesclpl 37513 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2710 ax-rep 5210 ax-sep 5224 ax-nul 5231 ax-pow 5289 ax-pr 5353 ax-un 7597 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-ral 3070 df-rex 3071 df-reu 3073 df-rab 3074 df-v 3435 df-sbc 3718 df-csb 3834 df-dif 3891 df-un 3893 df-in 3895 df-ss 3905 df-nul 4258 df-if 4461 df-pw 4536 df-sn 4563 df-pr 4565 df-op 4569 df-uni 4841 df-iun 4927 df-br 5076 df-opab 5138 df-mpt 5159 df-id 5490 df-xp 5596 df-rel 5597 df-cnv 5598 df-co 5599 df-dm 5600 df-rn 5601 df-res 5602 df-ima 5603 df-iota 6395 df-fun 6439 df-fn 6440 df-f 6441 df-f1 6442 df-fo 6443 df-f1o 6444 df-fv 6445 df-riota 7241 df-ov 7287 df-oprab 7288 df-proset 18022 df-poset 18040 df-plt 18057 df-lub 18073 df-glb 18074 df-join 18075 df-meet 18076 df-p0 18152 df-p1 18153 df-lat 18159 df-clat 18226 df-oposet 37197 df-ol 37199 df-oml 37200 df-covers 37287 df-ats 37288 df-atl 37319 df-cvlat 37343 df-hlat 37372 df-llines 37519 df-lplanes 37520 df-lvols 37521 |
This theorem is referenced by: dath2 37758 |
Copyright terms: Public domain | W3C validator |