Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dath Structured version   Visualization version   GIF version

Theorem dath 39110
Description: Desargues's theorem of projective geometry (proved for a Hilbert lattice). Assume each triple of atoms (points) 𝑃𝑄𝑅 and π‘†π‘‡π‘ˆ forms a triangle (i.e. determines a plane). Assume that lines 𝑃𝑆, 𝑄𝑇, and π‘…π‘ˆ meet at a "center of perspectivity" 𝐢. (We also assume that 𝐢 is not on any of the 6 lines forming the two triangles.) Then the atoms 𝐷 = (𝑃 ∨ 𝑄) ∧ (𝑆 ∨ 𝑇), 𝐸 = (𝑄 ∨ 𝑅) ∧ (𝑇 ∨ π‘ˆ), 𝐹 = (𝑅 ∨ 𝑃) ∧ (π‘ˆ ∨ 𝑆) are colinear, forming an "axis of perspectivity".

Our proof roughly follows Theorem 2.7.1, p. 78 in Beutelspacher and Rosenbaum, Projective Geometry: From Foundations to Applications, Cambridge University Press (1988). Unlike them, we do not assume that 𝐢 is an atom to make this theorem slightly more general for easier future use. However, we prove that 𝐢 must be an atom in dalemcea 39034.

For a visual demonstration, see the "Desargues's theorem" applet at http://www.dynamicgeometry.com/JavaSketchpad/Gallery.html 39034. The points I, J, and K there define the axis of perspectivity.

See Theorems dalaw 39260 for Desargues's law, which eliminates all of the preconditions on the atoms except for central perspectivity. This is Metamath 100 proof #87. (Contributed by NM, 20-Aug-2012.)

Hypotheses
Ref Expression
dath.b 𝐡 = (Baseβ€˜πΎ)
dath.l ≀ = (leβ€˜πΎ)
dath.j ∨ = (joinβ€˜πΎ)
dath.a 𝐴 = (Atomsβ€˜πΎ)
dath.m ∧ = (meetβ€˜πΎ)
dath.o 𝑂 = (LPlanesβ€˜πΎ)
dath.d 𝐷 = ((𝑃 ∨ 𝑄) ∧ (𝑆 ∨ 𝑇))
dath.e 𝐸 = ((𝑄 ∨ 𝑅) ∧ (𝑇 ∨ π‘ˆ))
dath.f 𝐹 = ((𝑅 ∨ 𝑃) ∧ (π‘ˆ ∨ 𝑆))
Assertion
Ref Expression
dath ((((𝐾 ∈ HL ∧ 𝐢 ∈ 𝐡) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ π‘ˆ ∈ 𝐴)) ∧ (((𝑃 ∨ 𝑄) ∨ 𝑅) ∈ 𝑂 ∧ ((𝑆 ∨ 𝑇) ∨ π‘ˆ) ∈ 𝑂) ∧ ((Β¬ 𝐢 ≀ (𝑃 ∨ 𝑄) ∧ Β¬ 𝐢 ≀ (𝑄 ∨ 𝑅) ∧ Β¬ 𝐢 ≀ (𝑅 ∨ 𝑃)) ∧ (Β¬ 𝐢 ≀ (𝑆 ∨ 𝑇) ∧ Β¬ 𝐢 ≀ (𝑇 ∨ π‘ˆ) ∧ Β¬ 𝐢 ≀ (π‘ˆ ∨ 𝑆)) ∧ (𝐢 ≀ (𝑃 ∨ 𝑆) ∧ 𝐢 ≀ (𝑄 ∨ 𝑇) ∧ 𝐢 ≀ (𝑅 ∨ π‘ˆ)))) β†’ 𝐹 ≀ (𝐷 ∨ 𝐸))

Proof of Theorem dath
StepHypRef Expression
1 dath.b . . . . . 6 𝐡 = (Baseβ€˜πΎ)
21eleq2i 2817 . . . . 5 (𝐢 ∈ 𝐡 ↔ 𝐢 ∈ (Baseβ€˜πΎ))
32anbi2i 622 . . . 4 ((𝐾 ∈ HL ∧ 𝐢 ∈ 𝐡) ↔ (𝐾 ∈ HL ∧ 𝐢 ∈ (Baseβ€˜πΎ)))
433anbi1i 1154 . . 3 (((𝐾 ∈ HL ∧ 𝐢 ∈ 𝐡) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ π‘ˆ ∈ 𝐴)) ↔ ((𝐾 ∈ HL ∧ 𝐢 ∈ (Baseβ€˜πΎ)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ π‘ˆ ∈ 𝐴)))
543anbi1i 1154 . 2 ((((𝐾 ∈ HL ∧ 𝐢 ∈ 𝐡) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ π‘ˆ ∈ 𝐴)) ∧ (((𝑃 ∨ 𝑄) ∨ 𝑅) ∈ 𝑂 ∧ ((𝑆 ∨ 𝑇) ∨ π‘ˆ) ∈ 𝑂) ∧ ((Β¬ 𝐢 ≀ (𝑃 ∨ 𝑄) ∧ Β¬ 𝐢 ≀ (𝑄 ∨ 𝑅) ∧ Β¬ 𝐢 ≀ (𝑅 ∨ 𝑃)) ∧ (Β¬ 𝐢 ≀ (𝑆 ∨ 𝑇) ∧ Β¬ 𝐢 ≀ (𝑇 ∨ π‘ˆ) ∧ Β¬ 𝐢 ≀ (π‘ˆ ∨ 𝑆)) ∧ (𝐢 ≀ (𝑃 ∨ 𝑆) ∧ 𝐢 ≀ (𝑄 ∨ 𝑇) ∧ 𝐢 ≀ (𝑅 ∨ π‘ˆ)))) ↔ (((𝐾 ∈ HL ∧ 𝐢 ∈ (Baseβ€˜πΎ)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ π‘ˆ ∈ 𝐴)) ∧ (((𝑃 ∨ 𝑄) ∨ 𝑅) ∈ 𝑂 ∧ ((𝑆 ∨ 𝑇) ∨ π‘ˆ) ∈ 𝑂) ∧ ((Β¬ 𝐢 ≀ (𝑃 ∨ 𝑄) ∧ Β¬ 𝐢 ≀ (𝑄 ∨ 𝑅) ∧ Β¬ 𝐢 ≀ (𝑅 ∨ 𝑃)) ∧ (Β¬ 𝐢 ≀ (𝑆 ∨ 𝑇) ∧ Β¬ 𝐢 ≀ (𝑇 ∨ π‘ˆ) ∧ Β¬ 𝐢 ≀ (π‘ˆ ∨ 𝑆)) ∧ (𝐢 ≀ (𝑃 ∨ 𝑆) ∧ 𝐢 ≀ (𝑄 ∨ 𝑇) ∧ 𝐢 ≀ (𝑅 ∨ π‘ˆ)))))
6 dath.l . 2 ≀ = (leβ€˜πΎ)
7 dath.j . 2 ∨ = (joinβ€˜πΎ)
8 dath.a . 2 𝐴 = (Atomsβ€˜πΎ)
9 dath.m . 2 ∧ = (meetβ€˜πΎ)
10 dath.o . 2 𝑂 = (LPlanesβ€˜πΎ)
11 eqid 2724 . 2 ((𝑃 ∨ 𝑄) ∨ 𝑅) = ((𝑃 ∨ 𝑄) ∨ 𝑅)
12 eqid 2724 . 2 ((𝑆 ∨ 𝑇) ∨ π‘ˆ) = ((𝑆 ∨ 𝑇) ∨ π‘ˆ)
13 dath.d . 2 𝐷 = ((𝑃 ∨ 𝑄) ∧ (𝑆 ∨ 𝑇))
14 dath.e . 2 𝐸 = ((𝑄 ∨ 𝑅) ∧ (𝑇 ∨ π‘ˆ))
15 dath.f . 2 𝐹 = ((𝑅 ∨ 𝑃) ∧ (π‘ˆ ∨ 𝑆))
165, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15dalem63 39109 1 ((((𝐾 ∈ HL ∧ 𝐢 ∈ 𝐡) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ π‘ˆ ∈ 𝐴)) ∧ (((𝑃 ∨ 𝑄) ∨ 𝑅) ∈ 𝑂 ∧ ((𝑆 ∨ 𝑇) ∨ π‘ˆ) ∈ 𝑂) ∧ ((Β¬ 𝐢 ≀ (𝑃 ∨ 𝑄) ∧ Β¬ 𝐢 ≀ (𝑄 ∨ 𝑅) ∧ Β¬ 𝐢 ≀ (𝑅 ∨ 𝑃)) ∧ (Β¬ 𝐢 ≀ (𝑆 ∨ 𝑇) ∧ Β¬ 𝐢 ≀ (𝑇 ∨ π‘ˆ) ∧ Β¬ 𝐢 ≀ (π‘ˆ ∨ 𝑆)) ∧ (𝐢 ≀ (𝑃 ∨ 𝑆) ∧ 𝐢 ≀ (𝑄 ∨ 𝑇) ∧ 𝐢 ≀ (𝑅 ∨ π‘ˆ)))) β†’ 𝐹 ≀ (𝐷 ∨ 𝐸))
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   β†’ wi 4   ∧ wa 395   ∧ w3a 1084   = wceq 1533   ∈ wcel 2098   class class class wbr 5139  β€˜cfv 6534  (class class class)co 7402  Basecbs 17149  lecple 17209  joincjn 18272  meetcmee 18273  Atomscatm 38636  HLchlt 38723  LPlanesclpl 38866
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-rep 5276  ax-sep 5290  ax-nul 5297  ax-pow 5354  ax-pr 5418  ax-un 7719
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-ral 3054  df-rex 3063  df-rmo 3368  df-reu 3369  df-rab 3425  df-v 3468  df-sbc 3771  df-csb 3887  df-dif 3944  df-un 3946  df-in 3948  df-ss 3958  df-nul 4316  df-if 4522  df-pw 4597  df-sn 4622  df-pr 4624  df-op 4628  df-uni 4901  df-iun 4990  df-br 5140  df-opab 5202  df-mpt 5223  df-id 5565  df-xp 5673  df-rel 5674  df-cnv 5675  df-co 5676  df-dm 5677  df-rn 5678  df-res 5679  df-ima 5680  df-iota 6486  df-fun 6536  df-fn 6537  df-f 6538  df-f1 6539  df-fo 6540  df-f1o 6541  df-fv 6542  df-riota 7358  df-ov 7405  df-oprab 7406  df-proset 18256  df-poset 18274  df-plt 18291  df-lub 18307  df-glb 18308  df-join 18309  df-meet 18310  df-p0 18386  df-p1 18387  df-lat 18393  df-clat 18460  df-oposet 38549  df-ol 38551  df-oml 38552  df-covers 38639  df-ats 38640  df-atl 38671  df-cvlat 38695  df-hlat 38724  df-llines 38872  df-lplanes 38873  df-lvols 38874
This theorem is referenced by:  dath2  39111
  Copyright terms: Public domain W3C validator