![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dath | Structured version Visualization version GIF version |
Description: Desargues's theorem of
projective geometry (proved for a Hilbert
lattice). Assume each triple of atoms (points) πππ
and πππ
forms a triangle (i.e. determines a plane). Assume that lines ππ,
ππ, and π
π meet at a "center of
perspectivity" πΆ. (We
also assume that πΆ is not on any of the 6 lines forming
the two
triangles.) Then the atoms π· = (π β¨ π) β§ (π β¨ π),
πΈ =
(π β¨ π
) β§ (π β¨ π),
πΉ =
(π
β¨ π) β§ (π β¨ π) are colinear, forming an "axis
of
perspectivity".
Our proof roughly follows Theorem 2.7.1, p. 78 in Beutelspacher and Rosenbaum, Projective Geometry: From Foundations to Applications, Cambridge University Press (1988). Unlike them, we do not assume that πΆ is an atom to make this theorem slightly more general for easier future use. However, we prove that πΆ must be an atom in dalemcea 38519. For a visual demonstration, see the "Desargues's theorem" applet at http://www.dynamicgeometry.com/JavaSketchpad/Gallery.html 38519. The points I, J, and K there define the axis of perspectivity. See Theorems dalaw 38745 for Desargues's law, which eliminates all of the preconditions on the atoms except for central perspectivity. This is Metamath 100 proof #87. (Contributed by NM, 20-Aug-2012.) |
Ref | Expression |
---|---|
dath.b | β’ π΅ = (BaseβπΎ) |
dath.l | β’ β€ = (leβπΎ) |
dath.j | β’ β¨ = (joinβπΎ) |
dath.a | β’ π΄ = (AtomsβπΎ) |
dath.m | β’ β§ = (meetβπΎ) |
dath.o | β’ π = (LPlanesβπΎ) |
dath.d | β’ π· = ((π β¨ π) β§ (π β¨ π)) |
dath.e | β’ πΈ = ((π β¨ π ) β§ (π β¨ π)) |
dath.f | β’ πΉ = ((π β¨ π) β§ (π β¨ π)) |
Ref | Expression |
---|---|
dath | β’ ((((πΎ β HL β§ πΆ β π΅) β§ (π β π΄ β§ π β π΄ β§ π β π΄) β§ (π β π΄ β§ π β π΄ β§ π β π΄)) β§ (((π β¨ π) β¨ π ) β π β§ ((π β¨ π) β¨ π) β π) β§ ((Β¬ πΆ β€ (π β¨ π) β§ Β¬ πΆ β€ (π β¨ π ) β§ Β¬ πΆ β€ (π β¨ π)) β§ (Β¬ πΆ β€ (π β¨ π) β§ Β¬ πΆ β€ (π β¨ π) β§ Β¬ πΆ β€ (π β¨ π)) β§ (πΆ β€ (π β¨ π) β§ πΆ β€ (π β¨ π) β§ πΆ β€ (π β¨ π)))) β πΉ β€ (π· β¨ πΈ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dath.b | . . . . . 6 β’ π΅ = (BaseβπΎ) | |
2 | 1 | eleq2i 2825 | . . . . 5 β’ (πΆ β π΅ β πΆ β (BaseβπΎ)) |
3 | 2 | anbi2i 623 | . . . 4 β’ ((πΎ β HL β§ πΆ β π΅) β (πΎ β HL β§ πΆ β (BaseβπΎ))) |
4 | 3 | 3anbi1i 1157 | . . 3 β’ (((πΎ β HL β§ πΆ β π΅) β§ (π β π΄ β§ π β π΄ β§ π β π΄) β§ (π β π΄ β§ π β π΄ β§ π β π΄)) β ((πΎ β HL β§ πΆ β (BaseβπΎ)) β§ (π β π΄ β§ π β π΄ β§ π β π΄) β§ (π β π΄ β§ π β π΄ β§ π β π΄))) |
5 | 4 | 3anbi1i 1157 | . 2 β’ ((((πΎ β HL β§ πΆ β π΅) β§ (π β π΄ β§ π β π΄ β§ π β π΄) β§ (π β π΄ β§ π β π΄ β§ π β π΄)) β§ (((π β¨ π) β¨ π ) β π β§ ((π β¨ π) β¨ π) β π) β§ ((Β¬ πΆ β€ (π β¨ π) β§ Β¬ πΆ β€ (π β¨ π ) β§ Β¬ πΆ β€ (π β¨ π)) β§ (Β¬ πΆ β€ (π β¨ π) β§ Β¬ πΆ β€ (π β¨ π) β§ Β¬ πΆ β€ (π β¨ π)) β§ (πΆ β€ (π β¨ π) β§ πΆ β€ (π β¨ π) β§ πΆ β€ (π β¨ π)))) β (((πΎ β HL β§ πΆ β (BaseβπΎ)) β§ (π β π΄ β§ π β π΄ β§ π β π΄) β§ (π β π΄ β§ π β π΄ β§ π β π΄)) β§ (((π β¨ π) β¨ π ) β π β§ ((π β¨ π) β¨ π) β π) β§ ((Β¬ πΆ β€ (π β¨ π) β§ Β¬ πΆ β€ (π β¨ π ) β§ Β¬ πΆ β€ (π β¨ π)) β§ (Β¬ πΆ β€ (π β¨ π) β§ Β¬ πΆ β€ (π β¨ π) β§ Β¬ πΆ β€ (π β¨ π)) β§ (πΆ β€ (π β¨ π) β§ πΆ β€ (π β¨ π) β§ πΆ β€ (π β¨ π))))) |
6 | dath.l | . 2 β’ β€ = (leβπΎ) | |
7 | dath.j | . 2 β’ β¨ = (joinβπΎ) | |
8 | dath.a | . 2 β’ π΄ = (AtomsβπΎ) | |
9 | dath.m | . 2 β’ β§ = (meetβπΎ) | |
10 | dath.o | . 2 β’ π = (LPlanesβπΎ) | |
11 | eqid 2732 | . 2 β’ ((π β¨ π) β¨ π ) = ((π β¨ π) β¨ π ) | |
12 | eqid 2732 | . 2 β’ ((π β¨ π) β¨ π) = ((π β¨ π) β¨ π) | |
13 | dath.d | . 2 β’ π· = ((π β¨ π) β§ (π β¨ π)) | |
14 | dath.e | . 2 β’ πΈ = ((π β¨ π ) β§ (π β¨ π)) | |
15 | dath.f | . 2 β’ πΉ = ((π β¨ π) β§ (π β¨ π)) | |
16 | 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 | dalem63 38594 | 1 β’ ((((πΎ β HL β§ πΆ β π΅) β§ (π β π΄ β§ π β π΄ β§ π β π΄) β§ (π β π΄ β§ π β π΄ β§ π β π΄)) β§ (((π β¨ π) β¨ π ) β π β§ ((π β¨ π) β¨ π) β π) β§ ((Β¬ πΆ β€ (π β¨ π) β§ Β¬ πΆ β€ (π β¨ π ) β§ Β¬ πΆ β€ (π β¨ π)) β§ (Β¬ πΆ β€ (π β¨ π) β§ Β¬ πΆ β€ (π β¨ π) β§ Β¬ πΆ β€ (π β¨ π)) β§ (πΆ β€ (π β¨ π) β§ πΆ β€ (π β¨ π) β§ πΆ β€ (π β¨ π)))) β πΉ β€ (π· β¨ πΈ)) |
Colors of variables: wff setvar class |
Syntax hints: Β¬ wn 3 β wi 4 β§ wa 396 β§ w3a 1087 = wceq 1541 β wcel 2106 class class class wbr 5147 βcfv 6540 (class class class)co 7405 Basecbs 17140 lecple 17200 joincjn 18260 meetcmee 18261 Atomscatm 38121 HLchlt 38208 LPlanesclpl 38351 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5573 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-riota 7361 df-ov 7408 df-oprab 7409 df-proset 18244 df-poset 18262 df-plt 18279 df-lub 18295 df-glb 18296 df-join 18297 df-meet 18298 df-p0 18374 df-p1 18375 df-lat 18381 df-clat 18448 df-oposet 38034 df-ol 38036 df-oml 38037 df-covers 38124 df-ats 38125 df-atl 38156 df-cvlat 38180 df-hlat 38209 df-llines 38357 df-lplanes 38358 df-lvols 38359 |
This theorem is referenced by: dath2 38596 |
Copyright terms: Public domain | W3C validator |