Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dalemclccjdd Structured version   Visualization version   GIF version

Theorem dalemclccjdd 36984
Description: Lemma for dath 37032. Frequently-used utility lemma. (Contributed by NM, 15-Aug-2012.)
Hypothesis
Ref Expression
da.ps0 (𝜓 ↔ ((𝑐𝐴𝑑𝐴) ∧ ¬ 𝑐 𝑌 ∧ (𝑑𝑐 ∧ ¬ 𝑑 𝑌𝐶 (𝑐 𝑑))))
Assertion
Ref Expression
dalemclccjdd (𝜓𝐶 (𝑐 𝑑))

Proof of Theorem dalemclccjdd
StepHypRef Expression
1 da.ps0 . 2 (𝜓 ↔ ((𝑐𝐴𝑑𝐴) ∧ ¬ 𝑐 𝑌 ∧ (𝑑𝑐 ∧ ¬ 𝑑 𝑌𝐶 (𝑐 𝑑))))
2 simp33 1208 . 2 (((𝑐𝐴𝑑𝐴) ∧ ¬ 𝑐 𝑌 ∧ (𝑑𝑐 ∧ ¬ 𝑑 𝑌𝐶 (𝑐 𝑑))) → 𝐶 (𝑐 𝑑))
31, 2sylbi 220 1 (𝜓𝐶 (𝑐 𝑑))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  w3a 1084  wcel 2111  wne 2987   class class class wbr 5030  (class class class)co 7135
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 210  df-an 400  df-3an 1086
This theorem is referenced by:  dalemswapyzps  36986  dalemrotps  36987  dalem21  36990  dalem25  36994
  Copyright terms: Public domain W3C validator