Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dalemrotps Structured version   Visualization version   GIF version

Theorem dalemrotps 39685
Description: Lemma for dath 39730. Rotate triangles 𝑌 = 𝑃𝑄𝑅 and 𝑍 = 𝑆𝑇𝑈 to allow reuse of analogous proofs. (Contributed by NM, 15-Aug-2012.)
Hypotheses
Ref Expression
dalem.ph (𝜑 ↔ (((𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (𝑌𝑂𝑍𝑂) ∧ ((¬ 𝐶 (𝑃 𝑄) ∧ ¬ 𝐶 (𝑄 𝑅) ∧ ¬ 𝐶 (𝑅 𝑃)) ∧ (¬ 𝐶 (𝑆 𝑇) ∧ ¬ 𝐶 (𝑇 𝑈) ∧ ¬ 𝐶 (𝑈 𝑆)) ∧ (𝐶 (𝑃 𝑆) ∧ 𝐶 (𝑄 𝑇) ∧ 𝐶 (𝑅 𝑈)))))
dalem.l = (le‘𝐾)
dalem.j = (join‘𝐾)
dalem.a 𝐴 = (Atoms‘𝐾)
dalem.ps (𝜓 ↔ ((𝑐𝐴𝑑𝐴) ∧ ¬ 𝑐 𝑌 ∧ (𝑑𝑐 ∧ ¬ 𝑑 𝑌𝐶 (𝑐 𝑑))))
dalemrotps.y 𝑌 = ((𝑃 𝑄) 𝑅)
Assertion
Ref Expression
dalemrotps ((𝜑𝜓) → ((𝑐𝐴𝑑𝐴) ∧ ¬ 𝑐 ((𝑄 𝑅) 𝑃) ∧ (𝑑𝑐 ∧ ¬ 𝑑 ((𝑄 𝑅) 𝑃) ∧ 𝐶 (𝑐 𝑑))))

Proof of Theorem dalemrotps
StepHypRef Expression
1 dalem.ps . . . . 5 (𝜓 ↔ ((𝑐𝐴𝑑𝐴) ∧ ¬ 𝑐 𝑌 ∧ (𝑑𝑐 ∧ ¬ 𝑑 𝑌𝐶 (𝑐 𝑑))))
21dalemccea 39677 . . . 4 (𝜓𝑐𝐴)
31dalemddea 39678 . . . 4 (𝜓𝑑𝐴)
42, 3jca 511 . . 3 (𝜓 → (𝑐𝐴𝑑𝐴))
54adantl 481 . 2 ((𝜑𝜓) → (𝑐𝐴𝑑𝐴))
61dalem-ccly 39679 . . . 4 (𝜓 → ¬ 𝑐 𝑌)
76adantl 481 . . 3 ((𝜑𝜓) → ¬ 𝑐 𝑌)
8 dalemrotps.y . . . . . 6 𝑌 = ((𝑃 𝑄) 𝑅)
9 dalem.ph . . . . . . 7 (𝜑 ↔ (((𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (𝑌𝑂𝑍𝑂) ∧ ((¬ 𝐶 (𝑃 𝑄) ∧ ¬ 𝐶 (𝑄 𝑅) ∧ ¬ 𝐶 (𝑅 𝑃)) ∧ (¬ 𝐶 (𝑆 𝑇) ∧ ¬ 𝐶 (𝑇 𝑈) ∧ ¬ 𝐶 (𝑈 𝑆)) ∧ (𝐶 (𝑃 𝑆) ∧ 𝐶 (𝑄 𝑇) ∧ 𝐶 (𝑅 𝑈)))))
10 dalem.j . . . . . . 7 = (join‘𝐾)
11 dalem.a . . . . . . 7 𝐴 = (Atoms‘𝐾)
129, 10, 11dalemqrprot 39642 . . . . . 6 (𝜑 → ((𝑄 𝑅) 𝑃) = ((𝑃 𝑄) 𝑅))
138, 12eqtr4id 2783 . . . . 5 (𝜑𝑌 = ((𝑄 𝑅) 𝑃))
1413breq2d 5119 . . . 4 (𝜑 → (𝑐 𝑌𝑐 ((𝑄 𝑅) 𝑃)))
1514adantr 480 . . 3 ((𝜑𝜓) → (𝑐 𝑌𝑐 ((𝑄 𝑅) 𝑃)))
167, 15mtbid 324 . 2 ((𝜑𝜓) → ¬ 𝑐 ((𝑄 𝑅) 𝑃))
171dalemccnedd 39681 . . . . 5 (𝜓𝑐𝑑)
1817necomd 2980 . . . 4 (𝜓𝑑𝑐)
1918adantl 481 . . 3 ((𝜑𝜓) → 𝑑𝑐)
201dalem-ddly 39680 . . . . 5 (𝜓 → ¬ 𝑑 𝑌)
2120adantl 481 . . . 4 ((𝜑𝜓) → ¬ 𝑑 𝑌)
2213breq2d 5119 . . . . 5 (𝜑 → (𝑑 𝑌𝑑 ((𝑄 𝑅) 𝑃)))
2322adantr 480 . . . 4 ((𝜑𝜓) → (𝑑 𝑌𝑑 ((𝑄 𝑅) 𝑃)))
2421, 23mtbid 324 . . 3 ((𝜑𝜓) → ¬ 𝑑 ((𝑄 𝑅) 𝑃))
251dalemclccjdd 39682 . . . 4 (𝜓𝐶 (𝑐 𝑑))
2625adantl 481 . . 3 ((𝜑𝜓) → 𝐶 (𝑐 𝑑))
2719, 24, 263jca 1128 . 2 ((𝜑𝜓) → (𝑑𝑐 ∧ ¬ 𝑑 ((𝑄 𝑅) 𝑃) ∧ 𝐶 (𝑐 𝑑)))
285, 16, 273jca 1128 1 ((𝜑𝜓) → ((𝑐𝐴𝑑𝐴) ∧ ¬ 𝑐 ((𝑄 𝑅) 𝑃) ∧ (𝑑𝑐 ∧ ¬ 𝑑 ((𝑄 𝑅) 𝑃) ∧ 𝐶 (𝑐 𝑑))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925   class class class wbr 5107  cfv 6511  (class class class)co 7387  Basecbs 17179  lecple 17227  joincjn 18272  Atomscatm 39256  HLchlt 39343
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-proset 18255  df-poset 18274  df-lub 18305  df-glb 18306  df-join 18307  df-meet 18308  df-lat 18391  df-ats 39260  df-atl 39291  df-cvlat 39315  df-hlat 39344
This theorem is referenced by:  dalem29  39695  dalem30  39696  dalem31N  39697  dalem32  39698  dalem33  39699  dalem34  39700  dalem35  39701  dalem36  39702  dalem37  39703  dalem40  39706  dalem46  39712  dalem47  39713  dalem49  39715  dalem50  39716  dalem58  39724  dalem59  39725
  Copyright terms: Public domain W3C validator