Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dalemrotps Structured version   Visualization version   GIF version

Theorem dalemrotps 36696
Description: Lemma for dath 36741. Rotate triangles 𝑌 = 𝑃𝑄𝑅 and 𝑍 = 𝑆𝑇𝑈 to allow reuse of analogous proofs. (Contributed by NM, 15-Aug-2012.)
Hypotheses
Ref Expression
dalem.ph (𝜑 ↔ (((𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (𝑌𝑂𝑍𝑂) ∧ ((¬ 𝐶 (𝑃 𝑄) ∧ ¬ 𝐶 (𝑄 𝑅) ∧ ¬ 𝐶 (𝑅 𝑃)) ∧ (¬ 𝐶 (𝑆 𝑇) ∧ ¬ 𝐶 (𝑇 𝑈) ∧ ¬ 𝐶 (𝑈 𝑆)) ∧ (𝐶 (𝑃 𝑆) ∧ 𝐶 (𝑄 𝑇) ∧ 𝐶 (𝑅 𝑈)))))
dalem.l = (le‘𝐾)
dalem.j = (join‘𝐾)
dalem.a 𝐴 = (Atoms‘𝐾)
dalem.ps (𝜓 ↔ ((𝑐𝐴𝑑𝐴) ∧ ¬ 𝑐 𝑌 ∧ (𝑑𝑐 ∧ ¬ 𝑑 𝑌𝐶 (𝑐 𝑑))))
dalemrotps.y 𝑌 = ((𝑃 𝑄) 𝑅)
Assertion
Ref Expression
dalemrotps ((𝜑𝜓) → ((𝑐𝐴𝑑𝐴) ∧ ¬ 𝑐 ((𝑄 𝑅) 𝑃) ∧ (𝑑𝑐 ∧ ¬ 𝑑 ((𝑄 𝑅) 𝑃) ∧ 𝐶 (𝑐 𝑑))))

Proof of Theorem dalemrotps
StepHypRef Expression
1 dalem.ps . . . . 5 (𝜓 ↔ ((𝑐𝐴𝑑𝐴) ∧ ¬ 𝑐 𝑌 ∧ (𝑑𝑐 ∧ ¬ 𝑑 𝑌𝐶 (𝑐 𝑑))))
21dalemccea 36688 . . . 4 (𝜓𝑐𝐴)
31dalemddea 36689 . . . 4 (𝜓𝑑𝐴)
42, 3jca 512 . . 3 (𝜓 → (𝑐𝐴𝑑𝐴))
54adantl 482 . 2 ((𝜑𝜓) → (𝑐𝐴𝑑𝐴))
61dalem-ccly 36690 . . . 4 (𝜓 → ¬ 𝑐 𝑌)
76adantl 482 . . 3 ((𝜑𝜓) → ¬ 𝑐 𝑌)
8 dalem.ph . . . . . . 7 (𝜑 ↔ (((𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (𝑌𝑂𝑍𝑂) ∧ ((¬ 𝐶 (𝑃 𝑄) ∧ ¬ 𝐶 (𝑄 𝑅) ∧ ¬ 𝐶 (𝑅 𝑃)) ∧ (¬ 𝐶 (𝑆 𝑇) ∧ ¬ 𝐶 (𝑇 𝑈) ∧ ¬ 𝐶 (𝑈 𝑆)) ∧ (𝐶 (𝑃 𝑆) ∧ 𝐶 (𝑄 𝑇) ∧ 𝐶 (𝑅 𝑈)))))
9 dalem.j . . . . . . 7 = (join‘𝐾)
10 dalem.a . . . . . . 7 𝐴 = (Atoms‘𝐾)
118, 9, 10dalemqrprot 36653 . . . . . 6 (𝜑 → ((𝑄 𝑅) 𝑃) = ((𝑃 𝑄) 𝑅))
12 dalemrotps.y . . . . . 6 𝑌 = ((𝑃 𝑄) 𝑅)
1311, 12syl6reqr 2879 . . . . 5 (𝜑𝑌 = ((𝑄 𝑅) 𝑃))
1413breq2d 5074 . . . 4 (𝜑 → (𝑐 𝑌𝑐 ((𝑄 𝑅) 𝑃)))
1514adantr 481 . . 3 ((𝜑𝜓) → (𝑐 𝑌𝑐 ((𝑄 𝑅) 𝑃)))
167, 15mtbid 325 . 2 ((𝜑𝜓) → ¬ 𝑐 ((𝑄 𝑅) 𝑃))
171dalemccnedd 36692 . . . . 5 (𝜓𝑐𝑑)
1817necomd 3075 . . . 4 (𝜓𝑑𝑐)
1918adantl 482 . . 3 ((𝜑𝜓) → 𝑑𝑐)
201dalem-ddly 36691 . . . . 5 (𝜓 → ¬ 𝑑 𝑌)
2120adantl 482 . . . 4 ((𝜑𝜓) → ¬ 𝑑 𝑌)
2213breq2d 5074 . . . . 5 (𝜑 → (𝑑 𝑌𝑑 ((𝑄 𝑅) 𝑃)))
2322adantr 481 . . . 4 ((𝜑𝜓) → (𝑑 𝑌𝑑 ((𝑄 𝑅) 𝑃)))
2421, 23mtbid 325 . . 3 ((𝜑𝜓) → ¬ 𝑑 ((𝑄 𝑅) 𝑃))
251dalemclccjdd 36693 . . . 4 (𝜓𝐶 (𝑐 𝑑))
2625adantl 482 . . 3 ((𝜑𝜓) → 𝐶 (𝑐 𝑑))
2719, 24, 263jca 1122 . 2 ((𝜑𝜓) → (𝑑𝑐 ∧ ¬ 𝑑 ((𝑄 𝑅) 𝑃) ∧ 𝐶 (𝑐 𝑑)))
285, 16, 273jca 1122 1 ((𝜑𝜓) → ((𝑐𝐴𝑑𝐴) ∧ ¬ 𝑐 ((𝑄 𝑅) 𝑃) ∧ (𝑑𝑐 ∧ ¬ 𝑑 ((𝑄 𝑅) 𝑃) ∧ 𝐶 (𝑐 𝑑))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 207  wa 396  w3a 1081   = wceq 1530  wcel 2107  wne 3020   class class class wbr 5062  cfv 6351  (class class class)co 7151  Basecbs 16475  lecple 16564  joincjn 17546  Atomscatm 36268  HLchlt 36355
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2797  ax-rep 5186  ax-sep 5199  ax-nul 5206  ax-pow 5262  ax-pr 5325  ax-un 7454
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2619  df-eu 2651  df-clab 2804  df-cleq 2818  df-clel 2897  df-nfc 2967  df-ne 3021  df-ral 3147  df-rex 3148  df-reu 3149  df-rab 3151  df-v 3501  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-nul 4295  df-if 4470  df-pw 4543  df-sn 4564  df-pr 4566  df-op 4570  df-uni 4837  df-iun 4918  df-br 5063  df-opab 5125  df-mpt 5143  df-id 5458  df-xp 5559  df-rel 5560  df-cnv 5561  df-co 5562  df-dm 5563  df-rn 5564  df-res 5565  df-ima 5566  df-iota 6311  df-fun 6353  df-fn 6354  df-f 6355  df-f1 6356  df-fo 6357  df-f1o 6358  df-fv 6359  df-riota 7109  df-ov 7154  df-oprab 7155  df-proset 17530  df-poset 17548  df-lub 17576  df-glb 17577  df-join 17578  df-meet 17579  df-lat 17648  df-ats 36272  df-atl 36303  df-cvlat 36327  df-hlat 36356
This theorem is referenced by:  dalem29  36706  dalem30  36707  dalem31N  36708  dalem32  36709  dalem33  36710  dalem34  36711  dalem35  36712  dalem36  36713  dalem37  36714  dalem40  36717  dalem46  36723  dalem47  36724  dalem49  36726  dalem50  36727  dalem58  36735  dalem59  36736
  Copyright terms: Public domain W3C validator