Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dalemrotps Structured version   Visualization version   GIF version

Theorem dalemrotps 37705
Description: Lemma for dath 37750. Rotate triangles 𝑌 = 𝑃𝑄𝑅 and 𝑍 = 𝑆𝑇𝑈 to allow reuse of analogous proofs. (Contributed by NM, 15-Aug-2012.)
Hypotheses
Ref Expression
dalem.ph (𝜑 ↔ (((𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (𝑌𝑂𝑍𝑂) ∧ ((¬ 𝐶 (𝑃 𝑄) ∧ ¬ 𝐶 (𝑄 𝑅) ∧ ¬ 𝐶 (𝑅 𝑃)) ∧ (¬ 𝐶 (𝑆 𝑇) ∧ ¬ 𝐶 (𝑇 𝑈) ∧ ¬ 𝐶 (𝑈 𝑆)) ∧ (𝐶 (𝑃 𝑆) ∧ 𝐶 (𝑄 𝑇) ∧ 𝐶 (𝑅 𝑈)))))
dalem.l = (le‘𝐾)
dalem.j = (join‘𝐾)
dalem.a 𝐴 = (Atoms‘𝐾)
dalem.ps (𝜓 ↔ ((𝑐𝐴𝑑𝐴) ∧ ¬ 𝑐 𝑌 ∧ (𝑑𝑐 ∧ ¬ 𝑑 𝑌𝐶 (𝑐 𝑑))))
dalemrotps.y 𝑌 = ((𝑃 𝑄) 𝑅)
Assertion
Ref Expression
dalemrotps ((𝜑𝜓) → ((𝑐𝐴𝑑𝐴) ∧ ¬ 𝑐 ((𝑄 𝑅) 𝑃) ∧ (𝑑𝑐 ∧ ¬ 𝑑 ((𝑄 𝑅) 𝑃) ∧ 𝐶 (𝑐 𝑑))))

Proof of Theorem dalemrotps
StepHypRef Expression
1 dalem.ps . . . . 5 (𝜓 ↔ ((𝑐𝐴𝑑𝐴) ∧ ¬ 𝑐 𝑌 ∧ (𝑑𝑐 ∧ ¬ 𝑑 𝑌𝐶 (𝑐 𝑑))))
21dalemccea 37697 . . . 4 (𝜓𝑐𝐴)
31dalemddea 37698 . . . 4 (𝜓𝑑𝐴)
42, 3jca 512 . . 3 (𝜓 → (𝑐𝐴𝑑𝐴))
54adantl 482 . 2 ((𝜑𝜓) → (𝑐𝐴𝑑𝐴))
61dalem-ccly 37699 . . . 4 (𝜓 → ¬ 𝑐 𝑌)
76adantl 482 . . 3 ((𝜑𝜓) → ¬ 𝑐 𝑌)
8 dalemrotps.y . . . . . 6 𝑌 = ((𝑃 𝑄) 𝑅)
9 dalem.ph . . . . . . 7 (𝜑 ↔ (((𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (𝑌𝑂𝑍𝑂) ∧ ((¬ 𝐶 (𝑃 𝑄) ∧ ¬ 𝐶 (𝑄 𝑅) ∧ ¬ 𝐶 (𝑅 𝑃)) ∧ (¬ 𝐶 (𝑆 𝑇) ∧ ¬ 𝐶 (𝑇 𝑈) ∧ ¬ 𝐶 (𝑈 𝑆)) ∧ (𝐶 (𝑃 𝑆) ∧ 𝐶 (𝑄 𝑇) ∧ 𝐶 (𝑅 𝑈)))))
10 dalem.j . . . . . . 7 = (join‘𝐾)
11 dalem.a . . . . . . 7 𝐴 = (Atoms‘𝐾)
129, 10, 11dalemqrprot 37662 . . . . . 6 (𝜑 → ((𝑄 𝑅) 𝑃) = ((𝑃 𝑄) 𝑅))
138, 12eqtr4id 2797 . . . . 5 (𝜑𝑌 = ((𝑄 𝑅) 𝑃))
1413breq2d 5086 . . . 4 (𝜑 → (𝑐 𝑌𝑐 ((𝑄 𝑅) 𝑃)))
1514adantr 481 . . 3 ((𝜑𝜓) → (𝑐 𝑌𝑐 ((𝑄 𝑅) 𝑃)))
167, 15mtbid 324 . 2 ((𝜑𝜓) → ¬ 𝑐 ((𝑄 𝑅) 𝑃))
171dalemccnedd 37701 . . . . 5 (𝜓𝑐𝑑)
1817necomd 2999 . . . 4 (𝜓𝑑𝑐)
1918adantl 482 . . 3 ((𝜑𝜓) → 𝑑𝑐)
201dalem-ddly 37700 . . . . 5 (𝜓 → ¬ 𝑑 𝑌)
2120adantl 482 . . . 4 ((𝜑𝜓) → ¬ 𝑑 𝑌)
2213breq2d 5086 . . . . 5 (𝜑 → (𝑑 𝑌𝑑 ((𝑄 𝑅) 𝑃)))
2322adantr 481 . . . 4 ((𝜑𝜓) → (𝑑 𝑌𝑑 ((𝑄 𝑅) 𝑃)))
2421, 23mtbid 324 . . 3 ((𝜑𝜓) → ¬ 𝑑 ((𝑄 𝑅) 𝑃))
251dalemclccjdd 37702 . . . 4 (𝜓𝐶 (𝑐 𝑑))
2625adantl 482 . . 3 ((𝜑𝜓) → 𝐶 (𝑐 𝑑))
2719, 24, 263jca 1127 . 2 ((𝜑𝜓) → (𝑑𝑐 ∧ ¬ 𝑑 ((𝑄 𝑅) 𝑃) ∧ 𝐶 (𝑐 𝑑)))
285, 16, 273jca 1127 1 ((𝜑𝜓) → ((𝑐𝐴𝑑𝐴) ∧ ¬ 𝑐 ((𝑄 𝑅) 𝑃) ∧ (𝑑𝑐 ∧ ¬ 𝑑 ((𝑄 𝑅) 𝑃) ∧ 𝐶 (𝑐 𝑑))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  w3a 1086   = wceq 1539  wcel 2106  wne 2943   class class class wbr 5074  cfv 6433  (class class class)co 7275  Basecbs 16912  lecple 16969  joincjn 18029  Atomscatm 37277  HLchlt 37364
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-proset 18013  df-poset 18031  df-lub 18064  df-glb 18065  df-join 18066  df-meet 18067  df-lat 18150  df-ats 37281  df-atl 37312  df-cvlat 37336  df-hlat 37365
This theorem is referenced by:  dalem29  37715  dalem30  37716  dalem31N  37717  dalem32  37718  dalem33  37719  dalem34  37720  dalem35  37721  dalem36  37722  dalem37  37723  dalem40  37726  dalem46  37732  dalem47  37733  dalem49  37735  dalem50  37736  dalem58  37744  dalem59  37745
  Copyright terms: Public domain W3C validator