| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dalemrotps | Structured version Visualization version GIF version | ||
| Description: Lemma for dath 39783. Rotate triangles 𝑌 = 𝑃𝑄𝑅 and 𝑍 = 𝑆𝑇𝑈 to allow reuse of analogous proofs. (Contributed by NM, 15-Aug-2012.) |
| Ref | Expression |
|---|---|
| dalem.ph | ⊢ (𝜑 ↔ (((𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) ∧ (𝑌 ∈ 𝑂 ∧ 𝑍 ∈ 𝑂) ∧ ((¬ 𝐶 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝐶 ≤ (𝑄 ∨ 𝑅) ∧ ¬ 𝐶 ≤ (𝑅 ∨ 𝑃)) ∧ (¬ 𝐶 ≤ (𝑆 ∨ 𝑇) ∧ ¬ 𝐶 ≤ (𝑇 ∨ 𝑈) ∧ ¬ 𝐶 ≤ (𝑈 ∨ 𝑆)) ∧ (𝐶 ≤ (𝑃 ∨ 𝑆) ∧ 𝐶 ≤ (𝑄 ∨ 𝑇) ∧ 𝐶 ≤ (𝑅 ∨ 𝑈))))) |
| dalem.l | ⊢ ≤ = (le‘𝐾) |
| dalem.j | ⊢ ∨ = (join‘𝐾) |
| dalem.a | ⊢ 𝐴 = (Atoms‘𝐾) |
| dalem.ps | ⊢ (𝜓 ↔ ((𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐴) ∧ ¬ 𝑐 ≤ 𝑌 ∧ (𝑑 ≠ 𝑐 ∧ ¬ 𝑑 ≤ 𝑌 ∧ 𝐶 ≤ (𝑐 ∨ 𝑑)))) |
| dalemrotps.y | ⊢ 𝑌 = ((𝑃 ∨ 𝑄) ∨ 𝑅) |
| Ref | Expression |
|---|---|
| dalemrotps | ⊢ ((𝜑 ∧ 𝜓) → ((𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐴) ∧ ¬ 𝑐 ≤ ((𝑄 ∨ 𝑅) ∨ 𝑃) ∧ (𝑑 ≠ 𝑐 ∧ ¬ 𝑑 ≤ ((𝑄 ∨ 𝑅) ∨ 𝑃) ∧ 𝐶 ≤ (𝑐 ∨ 𝑑)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dalem.ps | . . . . 5 ⊢ (𝜓 ↔ ((𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐴) ∧ ¬ 𝑐 ≤ 𝑌 ∧ (𝑑 ≠ 𝑐 ∧ ¬ 𝑑 ≤ 𝑌 ∧ 𝐶 ≤ (𝑐 ∨ 𝑑)))) | |
| 2 | 1 | dalemccea 39730 | . . . 4 ⊢ (𝜓 → 𝑐 ∈ 𝐴) |
| 3 | 1 | dalemddea 39731 | . . . 4 ⊢ (𝜓 → 𝑑 ∈ 𝐴) |
| 4 | 2, 3 | jca 511 | . . 3 ⊢ (𝜓 → (𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐴)) |
| 5 | 4 | adantl 481 | . 2 ⊢ ((𝜑 ∧ 𝜓) → (𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐴)) |
| 6 | 1 | dalem-ccly 39732 | . . . 4 ⊢ (𝜓 → ¬ 𝑐 ≤ 𝑌) |
| 7 | 6 | adantl 481 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → ¬ 𝑐 ≤ 𝑌) |
| 8 | dalemrotps.y | . . . . . 6 ⊢ 𝑌 = ((𝑃 ∨ 𝑄) ∨ 𝑅) | |
| 9 | dalem.ph | . . . . . . 7 ⊢ (𝜑 ↔ (((𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) ∧ (𝑌 ∈ 𝑂 ∧ 𝑍 ∈ 𝑂) ∧ ((¬ 𝐶 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝐶 ≤ (𝑄 ∨ 𝑅) ∧ ¬ 𝐶 ≤ (𝑅 ∨ 𝑃)) ∧ (¬ 𝐶 ≤ (𝑆 ∨ 𝑇) ∧ ¬ 𝐶 ≤ (𝑇 ∨ 𝑈) ∧ ¬ 𝐶 ≤ (𝑈 ∨ 𝑆)) ∧ (𝐶 ≤ (𝑃 ∨ 𝑆) ∧ 𝐶 ≤ (𝑄 ∨ 𝑇) ∧ 𝐶 ≤ (𝑅 ∨ 𝑈))))) | |
| 10 | dalem.j | . . . . . . 7 ⊢ ∨ = (join‘𝐾) | |
| 11 | dalem.a | . . . . . . 7 ⊢ 𝐴 = (Atoms‘𝐾) | |
| 12 | 9, 10, 11 | dalemqrprot 39695 | . . . . . 6 ⊢ (𝜑 → ((𝑄 ∨ 𝑅) ∨ 𝑃) = ((𝑃 ∨ 𝑄) ∨ 𝑅)) |
| 13 | 8, 12 | eqtr4id 2785 | . . . . 5 ⊢ (𝜑 → 𝑌 = ((𝑄 ∨ 𝑅) ∨ 𝑃)) |
| 14 | 13 | breq2d 5101 | . . . 4 ⊢ (𝜑 → (𝑐 ≤ 𝑌 ↔ 𝑐 ≤ ((𝑄 ∨ 𝑅) ∨ 𝑃))) |
| 15 | 14 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → (𝑐 ≤ 𝑌 ↔ 𝑐 ≤ ((𝑄 ∨ 𝑅) ∨ 𝑃))) |
| 16 | 7, 15 | mtbid 324 | . 2 ⊢ ((𝜑 ∧ 𝜓) → ¬ 𝑐 ≤ ((𝑄 ∨ 𝑅) ∨ 𝑃)) |
| 17 | 1 | dalemccnedd 39734 | . . . . 5 ⊢ (𝜓 → 𝑐 ≠ 𝑑) |
| 18 | 17 | necomd 2983 | . . . 4 ⊢ (𝜓 → 𝑑 ≠ 𝑐) |
| 19 | 18 | adantl 481 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → 𝑑 ≠ 𝑐) |
| 20 | 1 | dalem-ddly 39733 | . . . . 5 ⊢ (𝜓 → ¬ 𝑑 ≤ 𝑌) |
| 21 | 20 | adantl 481 | . . . 4 ⊢ ((𝜑 ∧ 𝜓) → ¬ 𝑑 ≤ 𝑌) |
| 22 | 13 | breq2d 5101 | . . . . 5 ⊢ (𝜑 → (𝑑 ≤ 𝑌 ↔ 𝑑 ≤ ((𝑄 ∨ 𝑅) ∨ 𝑃))) |
| 23 | 22 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝜓) → (𝑑 ≤ 𝑌 ↔ 𝑑 ≤ ((𝑄 ∨ 𝑅) ∨ 𝑃))) |
| 24 | 21, 23 | mtbid 324 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → ¬ 𝑑 ≤ ((𝑄 ∨ 𝑅) ∨ 𝑃)) |
| 25 | 1 | dalemclccjdd 39735 | . . . 4 ⊢ (𝜓 → 𝐶 ≤ (𝑐 ∨ 𝑑)) |
| 26 | 25 | adantl 481 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → 𝐶 ≤ (𝑐 ∨ 𝑑)) |
| 27 | 19, 24, 26 | 3jca 1128 | . 2 ⊢ ((𝜑 ∧ 𝜓) → (𝑑 ≠ 𝑐 ∧ ¬ 𝑑 ≤ ((𝑄 ∨ 𝑅) ∨ 𝑃) ∧ 𝐶 ≤ (𝑐 ∨ 𝑑))) |
| 28 | 5, 16, 27 | 3jca 1128 | 1 ⊢ ((𝜑 ∧ 𝜓) → ((𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐴) ∧ ¬ 𝑐 ≤ ((𝑄 ∨ 𝑅) ∨ 𝑃) ∧ (𝑑 ≠ 𝑐 ∧ ¬ 𝑑 ≤ ((𝑄 ∨ 𝑅) ∨ 𝑃) ∧ 𝐶 ≤ (𝑐 ∨ 𝑑)))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 ≠ wne 2928 class class class wbr 5089 ‘cfv 6481 (class class class)co 7346 Basecbs 17120 lecple 17168 joincjn 18217 Atomscatm 39310 HLchlt 39397 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-proset 18200 df-poset 18219 df-lub 18250 df-glb 18251 df-join 18252 df-meet 18253 df-lat 18338 df-ats 39314 df-atl 39345 df-cvlat 39369 df-hlat 39398 |
| This theorem is referenced by: dalem29 39748 dalem30 39749 dalem31N 39750 dalem32 39751 dalem33 39752 dalem34 39753 dalem35 39754 dalem36 39755 dalem37 39756 dalem40 39759 dalem46 39765 dalem47 39766 dalem49 39768 dalem50 39769 dalem58 39777 dalem59 39778 |
| Copyright terms: Public domain | W3C validator |