| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dalemrotps | Structured version Visualization version GIF version | ||
| Description: Lemma for dath 39715. Rotate triangles 𝑌 = 𝑃𝑄𝑅 and 𝑍 = 𝑆𝑇𝑈 to allow reuse of analogous proofs. (Contributed by NM, 15-Aug-2012.) |
| Ref | Expression |
|---|---|
| dalem.ph | ⊢ (𝜑 ↔ (((𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) ∧ (𝑌 ∈ 𝑂 ∧ 𝑍 ∈ 𝑂) ∧ ((¬ 𝐶 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝐶 ≤ (𝑄 ∨ 𝑅) ∧ ¬ 𝐶 ≤ (𝑅 ∨ 𝑃)) ∧ (¬ 𝐶 ≤ (𝑆 ∨ 𝑇) ∧ ¬ 𝐶 ≤ (𝑇 ∨ 𝑈) ∧ ¬ 𝐶 ≤ (𝑈 ∨ 𝑆)) ∧ (𝐶 ≤ (𝑃 ∨ 𝑆) ∧ 𝐶 ≤ (𝑄 ∨ 𝑇) ∧ 𝐶 ≤ (𝑅 ∨ 𝑈))))) |
| dalem.l | ⊢ ≤ = (le‘𝐾) |
| dalem.j | ⊢ ∨ = (join‘𝐾) |
| dalem.a | ⊢ 𝐴 = (Atoms‘𝐾) |
| dalem.ps | ⊢ (𝜓 ↔ ((𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐴) ∧ ¬ 𝑐 ≤ 𝑌 ∧ (𝑑 ≠ 𝑐 ∧ ¬ 𝑑 ≤ 𝑌 ∧ 𝐶 ≤ (𝑐 ∨ 𝑑)))) |
| dalemrotps.y | ⊢ 𝑌 = ((𝑃 ∨ 𝑄) ∨ 𝑅) |
| Ref | Expression |
|---|---|
| dalemrotps | ⊢ ((𝜑 ∧ 𝜓) → ((𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐴) ∧ ¬ 𝑐 ≤ ((𝑄 ∨ 𝑅) ∨ 𝑃) ∧ (𝑑 ≠ 𝑐 ∧ ¬ 𝑑 ≤ ((𝑄 ∨ 𝑅) ∨ 𝑃) ∧ 𝐶 ≤ (𝑐 ∨ 𝑑)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dalem.ps | . . . . 5 ⊢ (𝜓 ↔ ((𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐴) ∧ ¬ 𝑐 ≤ 𝑌 ∧ (𝑑 ≠ 𝑐 ∧ ¬ 𝑑 ≤ 𝑌 ∧ 𝐶 ≤ (𝑐 ∨ 𝑑)))) | |
| 2 | 1 | dalemccea 39662 | . . . 4 ⊢ (𝜓 → 𝑐 ∈ 𝐴) |
| 3 | 1 | dalemddea 39663 | . . . 4 ⊢ (𝜓 → 𝑑 ∈ 𝐴) |
| 4 | 2, 3 | jca 511 | . . 3 ⊢ (𝜓 → (𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐴)) |
| 5 | 4 | adantl 481 | . 2 ⊢ ((𝜑 ∧ 𝜓) → (𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐴)) |
| 6 | 1 | dalem-ccly 39664 | . . . 4 ⊢ (𝜓 → ¬ 𝑐 ≤ 𝑌) |
| 7 | 6 | adantl 481 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → ¬ 𝑐 ≤ 𝑌) |
| 8 | dalemrotps.y | . . . . . 6 ⊢ 𝑌 = ((𝑃 ∨ 𝑄) ∨ 𝑅) | |
| 9 | dalem.ph | . . . . . . 7 ⊢ (𝜑 ↔ (((𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) ∧ (𝑌 ∈ 𝑂 ∧ 𝑍 ∈ 𝑂) ∧ ((¬ 𝐶 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝐶 ≤ (𝑄 ∨ 𝑅) ∧ ¬ 𝐶 ≤ (𝑅 ∨ 𝑃)) ∧ (¬ 𝐶 ≤ (𝑆 ∨ 𝑇) ∧ ¬ 𝐶 ≤ (𝑇 ∨ 𝑈) ∧ ¬ 𝐶 ≤ (𝑈 ∨ 𝑆)) ∧ (𝐶 ≤ (𝑃 ∨ 𝑆) ∧ 𝐶 ≤ (𝑄 ∨ 𝑇) ∧ 𝐶 ≤ (𝑅 ∨ 𝑈))))) | |
| 10 | dalem.j | . . . . . . 7 ⊢ ∨ = (join‘𝐾) | |
| 11 | dalem.a | . . . . . . 7 ⊢ 𝐴 = (Atoms‘𝐾) | |
| 12 | 9, 10, 11 | dalemqrprot 39627 | . . . . . 6 ⊢ (𝜑 → ((𝑄 ∨ 𝑅) ∨ 𝑃) = ((𝑃 ∨ 𝑄) ∨ 𝑅)) |
| 13 | 8, 12 | eqtr4id 2783 | . . . . 5 ⊢ (𝜑 → 𝑌 = ((𝑄 ∨ 𝑅) ∨ 𝑃)) |
| 14 | 13 | breq2d 5104 | . . . 4 ⊢ (𝜑 → (𝑐 ≤ 𝑌 ↔ 𝑐 ≤ ((𝑄 ∨ 𝑅) ∨ 𝑃))) |
| 15 | 14 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → (𝑐 ≤ 𝑌 ↔ 𝑐 ≤ ((𝑄 ∨ 𝑅) ∨ 𝑃))) |
| 16 | 7, 15 | mtbid 324 | . 2 ⊢ ((𝜑 ∧ 𝜓) → ¬ 𝑐 ≤ ((𝑄 ∨ 𝑅) ∨ 𝑃)) |
| 17 | 1 | dalemccnedd 39666 | . . . . 5 ⊢ (𝜓 → 𝑐 ≠ 𝑑) |
| 18 | 17 | necomd 2980 | . . . 4 ⊢ (𝜓 → 𝑑 ≠ 𝑐) |
| 19 | 18 | adantl 481 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → 𝑑 ≠ 𝑐) |
| 20 | 1 | dalem-ddly 39665 | . . . . 5 ⊢ (𝜓 → ¬ 𝑑 ≤ 𝑌) |
| 21 | 20 | adantl 481 | . . . 4 ⊢ ((𝜑 ∧ 𝜓) → ¬ 𝑑 ≤ 𝑌) |
| 22 | 13 | breq2d 5104 | . . . . 5 ⊢ (𝜑 → (𝑑 ≤ 𝑌 ↔ 𝑑 ≤ ((𝑄 ∨ 𝑅) ∨ 𝑃))) |
| 23 | 22 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝜓) → (𝑑 ≤ 𝑌 ↔ 𝑑 ≤ ((𝑄 ∨ 𝑅) ∨ 𝑃))) |
| 24 | 21, 23 | mtbid 324 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → ¬ 𝑑 ≤ ((𝑄 ∨ 𝑅) ∨ 𝑃)) |
| 25 | 1 | dalemclccjdd 39667 | . . . 4 ⊢ (𝜓 → 𝐶 ≤ (𝑐 ∨ 𝑑)) |
| 26 | 25 | adantl 481 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → 𝐶 ≤ (𝑐 ∨ 𝑑)) |
| 27 | 19, 24, 26 | 3jca 1128 | . 2 ⊢ ((𝜑 ∧ 𝜓) → (𝑑 ≠ 𝑐 ∧ ¬ 𝑑 ≤ ((𝑄 ∨ 𝑅) ∨ 𝑃) ∧ 𝐶 ≤ (𝑐 ∨ 𝑑))) |
| 28 | 5, 16, 27 | 3jca 1128 | 1 ⊢ ((𝜑 ∧ 𝜓) → ((𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐴) ∧ ¬ 𝑐 ≤ ((𝑄 ∨ 𝑅) ∨ 𝑃) ∧ (𝑑 ≠ 𝑐 ∧ ¬ 𝑑 ≤ ((𝑄 ∨ 𝑅) ∨ 𝑃) ∧ 𝐶 ≤ (𝑐 ∨ 𝑑)))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 class class class wbr 5092 ‘cfv 6482 (class class class)co 7349 Basecbs 17120 lecple 17168 joincjn 18217 Atomscatm 39242 HLchlt 39329 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3343 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-riota 7306 df-ov 7352 df-oprab 7353 df-proset 18200 df-poset 18219 df-lub 18250 df-glb 18251 df-join 18252 df-meet 18253 df-lat 18338 df-ats 39246 df-atl 39277 df-cvlat 39301 df-hlat 39330 |
| This theorem is referenced by: dalem29 39680 dalem30 39681 dalem31N 39682 dalem32 39683 dalem33 39684 dalem34 39685 dalem35 39686 dalem36 39687 dalem37 39688 dalem40 39691 dalem46 39697 dalem47 39698 dalem49 39700 dalem50 39701 dalem58 39709 dalem59 39710 |
| Copyright terms: Public domain | W3C validator |