| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dalemrotps | Structured version Visualization version GIF version | ||
| Description: Lemma for dath 39737. Rotate triangles 𝑌 = 𝑃𝑄𝑅 and 𝑍 = 𝑆𝑇𝑈 to allow reuse of analogous proofs. (Contributed by NM, 15-Aug-2012.) |
| Ref | Expression |
|---|---|
| dalem.ph | ⊢ (𝜑 ↔ (((𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) ∧ (𝑌 ∈ 𝑂 ∧ 𝑍 ∈ 𝑂) ∧ ((¬ 𝐶 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝐶 ≤ (𝑄 ∨ 𝑅) ∧ ¬ 𝐶 ≤ (𝑅 ∨ 𝑃)) ∧ (¬ 𝐶 ≤ (𝑆 ∨ 𝑇) ∧ ¬ 𝐶 ≤ (𝑇 ∨ 𝑈) ∧ ¬ 𝐶 ≤ (𝑈 ∨ 𝑆)) ∧ (𝐶 ≤ (𝑃 ∨ 𝑆) ∧ 𝐶 ≤ (𝑄 ∨ 𝑇) ∧ 𝐶 ≤ (𝑅 ∨ 𝑈))))) |
| dalem.l | ⊢ ≤ = (le‘𝐾) |
| dalem.j | ⊢ ∨ = (join‘𝐾) |
| dalem.a | ⊢ 𝐴 = (Atoms‘𝐾) |
| dalem.ps | ⊢ (𝜓 ↔ ((𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐴) ∧ ¬ 𝑐 ≤ 𝑌 ∧ (𝑑 ≠ 𝑐 ∧ ¬ 𝑑 ≤ 𝑌 ∧ 𝐶 ≤ (𝑐 ∨ 𝑑)))) |
| dalemrotps.y | ⊢ 𝑌 = ((𝑃 ∨ 𝑄) ∨ 𝑅) |
| Ref | Expression |
|---|---|
| dalemrotps | ⊢ ((𝜑 ∧ 𝜓) → ((𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐴) ∧ ¬ 𝑐 ≤ ((𝑄 ∨ 𝑅) ∨ 𝑃) ∧ (𝑑 ≠ 𝑐 ∧ ¬ 𝑑 ≤ ((𝑄 ∨ 𝑅) ∨ 𝑃) ∧ 𝐶 ≤ (𝑐 ∨ 𝑑)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dalem.ps | . . . . 5 ⊢ (𝜓 ↔ ((𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐴) ∧ ¬ 𝑐 ≤ 𝑌 ∧ (𝑑 ≠ 𝑐 ∧ ¬ 𝑑 ≤ 𝑌 ∧ 𝐶 ≤ (𝑐 ∨ 𝑑)))) | |
| 2 | 1 | dalemccea 39684 | . . . 4 ⊢ (𝜓 → 𝑐 ∈ 𝐴) |
| 3 | 1 | dalemddea 39685 | . . . 4 ⊢ (𝜓 → 𝑑 ∈ 𝐴) |
| 4 | 2, 3 | jca 511 | . . 3 ⊢ (𝜓 → (𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐴)) |
| 5 | 4 | adantl 481 | . 2 ⊢ ((𝜑 ∧ 𝜓) → (𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐴)) |
| 6 | 1 | dalem-ccly 39686 | . . . 4 ⊢ (𝜓 → ¬ 𝑐 ≤ 𝑌) |
| 7 | 6 | adantl 481 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → ¬ 𝑐 ≤ 𝑌) |
| 8 | dalemrotps.y | . . . . . 6 ⊢ 𝑌 = ((𝑃 ∨ 𝑄) ∨ 𝑅) | |
| 9 | dalem.ph | . . . . . . 7 ⊢ (𝜑 ↔ (((𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) ∧ (𝑌 ∈ 𝑂 ∧ 𝑍 ∈ 𝑂) ∧ ((¬ 𝐶 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝐶 ≤ (𝑄 ∨ 𝑅) ∧ ¬ 𝐶 ≤ (𝑅 ∨ 𝑃)) ∧ (¬ 𝐶 ≤ (𝑆 ∨ 𝑇) ∧ ¬ 𝐶 ≤ (𝑇 ∨ 𝑈) ∧ ¬ 𝐶 ≤ (𝑈 ∨ 𝑆)) ∧ (𝐶 ≤ (𝑃 ∨ 𝑆) ∧ 𝐶 ≤ (𝑄 ∨ 𝑇) ∧ 𝐶 ≤ (𝑅 ∨ 𝑈))))) | |
| 10 | dalem.j | . . . . . . 7 ⊢ ∨ = (join‘𝐾) | |
| 11 | dalem.a | . . . . . . 7 ⊢ 𝐴 = (Atoms‘𝐾) | |
| 12 | 9, 10, 11 | dalemqrprot 39649 | . . . . . 6 ⊢ (𝜑 → ((𝑄 ∨ 𝑅) ∨ 𝑃) = ((𝑃 ∨ 𝑄) ∨ 𝑅)) |
| 13 | 8, 12 | eqtr4id 2784 | . . . . 5 ⊢ (𝜑 → 𝑌 = ((𝑄 ∨ 𝑅) ∨ 𝑃)) |
| 14 | 13 | breq2d 5122 | . . . 4 ⊢ (𝜑 → (𝑐 ≤ 𝑌 ↔ 𝑐 ≤ ((𝑄 ∨ 𝑅) ∨ 𝑃))) |
| 15 | 14 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → (𝑐 ≤ 𝑌 ↔ 𝑐 ≤ ((𝑄 ∨ 𝑅) ∨ 𝑃))) |
| 16 | 7, 15 | mtbid 324 | . 2 ⊢ ((𝜑 ∧ 𝜓) → ¬ 𝑐 ≤ ((𝑄 ∨ 𝑅) ∨ 𝑃)) |
| 17 | 1 | dalemccnedd 39688 | . . . . 5 ⊢ (𝜓 → 𝑐 ≠ 𝑑) |
| 18 | 17 | necomd 2981 | . . . 4 ⊢ (𝜓 → 𝑑 ≠ 𝑐) |
| 19 | 18 | adantl 481 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → 𝑑 ≠ 𝑐) |
| 20 | 1 | dalem-ddly 39687 | . . . . 5 ⊢ (𝜓 → ¬ 𝑑 ≤ 𝑌) |
| 21 | 20 | adantl 481 | . . . 4 ⊢ ((𝜑 ∧ 𝜓) → ¬ 𝑑 ≤ 𝑌) |
| 22 | 13 | breq2d 5122 | . . . . 5 ⊢ (𝜑 → (𝑑 ≤ 𝑌 ↔ 𝑑 ≤ ((𝑄 ∨ 𝑅) ∨ 𝑃))) |
| 23 | 22 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝜓) → (𝑑 ≤ 𝑌 ↔ 𝑑 ≤ ((𝑄 ∨ 𝑅) ∨ 𝑃))) |
| 24 | 21, 23 | mtbid 324 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → ¬ 𝑑 ≤ ((𝑄 ∨ 𝑅) ∨ 𝑃)) |
| 25 | 1 | dalemclccjdd 39689 | . . . 4 ⊢ (𝜓 → 𝐶 ≤ (𝑐 ∨ 𝑑)) |
| 26 | 25 | adantl 481 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → 𝐶 ≤ (𝑐 ∨ 𝑑)) |
| 27 | 19, 24, 26 | 3jca 1128 | . 2 ⊢ ((𝜑 ∧ 𝜓) → (𝑑 ≠ 𝑐 ∧ ¬ 𝑑 ≤ ((𝑄 ∨ 𝑅) ∨ 𝑃) ∧ 𝐶 ≤ (𝑐 ∨ 𝑑))) |
| 28 | 5, 16, 27 | 3jca 1128 | 1 ⊢ ((𝜑 ∧ 𝜓) → ((𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐴) ∧ ¬ 𝑐 ≤ ((𝑄 ∨ 𝑅) ∨ 𝑃) ∧ (𝑑 ≠ 𝑐 ∧ ¬ 𝑑 ≤ ((𝑄 ∨ 𝑅) ∨ 𝑃) ∧ 𝐶 ≤ (𝑐 ∨ 𝑑)))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ≠ wne 2926 class class class wbr 5110 ‘cfv 6514 (class class class)co 7390 Basecbs 17186 lecple 17234 joincjn 18279 Atomscatm 39263 HLchlt 39350 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-proset 18262 df-poset 18281 df-lub 18312 df-glb 18313 df-join 18314 df-meet 18315 df-lat 18398 df-ats 39267 df-atl 39298 df-cvlat 39322 df-hlat 39351 |
| This theorem is referenced by: dalem29 39702 dalem30 39703 dalem31N 39704 dalem32 39705 dalem33 39706 dalem34 39707 dalem35 39708 dalem36 39709 dalem37 39710 dalem40 39713 dalem46 39719 dalem47 39720 dalem49 39722 dalem50 39723 dalem58 39731 dalem59 39732 |
| Copyright terms: Public domain | W3C validator |