![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dalemrotps | Structured version Visualization version GIF version |
Description: Lemma for dath 38602. Rotate triangles π = πππ and π = πππ to allow reuse of analogous proofs. (Contributed by NM, 15-Aug-2012.) |
Ref | Expression |
---|---|
dalem.ph | β’ (π β (((πΎ β HL β§ πΆ β (BaseβπΎ)) β§ (π β π΄ β§ π β π΄ β§ π β π΄) β§ (π β π΄ β§ π β π΄ β§ π β π΄)) β§ (π β π β§ π β π) β§ ((Β¬ πΆ β€ (π β¨ π) β§ Β¬ πΆ β€ (π β¨ π ) β§ Β¬ πΆ β€ (π β¨ π)) β§ (Β¬ πΆ β€ (π β¨ π) β§ Β¬ πΆ β€ (π β¨ π) β§ Β¬ πΆ β€ (π β¨ π)) β§ (πΆ β€ (π β¨ π) β§ πΆ β€ (π β¨ π) β§ πΆ β€ (π β¨ π))))) |
dalem.l | β’ β€ = (leβπΎ) |
dalem.j | β’ β¨ = (joinβπΎ) |
dalem.a | β’ π΄ = (AtomsβπΎ) |
dalem.ps | β’ (π β ((π β π΄ β§ π β π΄) β§ Β¬ π β€ π β§ (π β π β§ Β¬ π β€ π β§ πΆ β€ (π β¨ π)))) |
dalemrotps.y | β’ π = ((π β¨ π) β¨ π ) |
Ref | Expression |
---|---|
dalemrotps | β’ ((π β§ π) β ((π β π΄ β§ π β π΄) β§ Β¬ π β€ ((π β¨ π ) β¨ π) β§ (π β π β§ Β¬ π β€ ((π β¨ π ) β¨ π) β§ πΆ β€ (π β¨ π)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dalem.ps | . . . . 5 β’ (π β ((π β π΄ β§ π β π΄) β§ Β¬ π β€ π β§ (π β π β§ Β¬ π β€ π β§ πΆ β€ (π β¨ π)))) | |
2 | 1 | dalemccea 38549 | . . . 4 β’ (π β π β π΄) |
3 | 1 | dalemddea 38550 | . . . 4 β’ (π β π β π΄) |
4 | 2, 3 | jca 512 | . . 3 β’ (π β (π β π΄ β§ π β π΄)) |
5 | 4 | adantl 482 | . 2 β’ ((π β§ π) β (π β π΄ β§ π β π΄)) |
6 | 1 | dalem-ccly 38551 | . . . 4 β’ (π β Β¬ π β€ π) |
7 | 6 | adantl 482 | . . 3 β’ ((π β§ π) β Β¬ π β€ π) |
8 | dalemrotps.y | . . . . . 6 β’ π = ((π β¨ π) β¨ π ) | |
9 | dalem.ph | . . . . . . 7 β’ (π β (((πΎ β HL β§ πΆ β (BaseβπΎ)) β§ (π β π΄ β§ π β π΄ β§ π β π΄) β§ (π β π΄ β§ π β π΄ β§ π β π΄)) β§ (π β π β§ π β π) β§ ((Β¬ πΆ β€ (π β¨ π) β§ Β¬ πΆ β€ (π β¨ π ) β§ Β¬ πΆ β€ (π β¨ π)) β§ (Β¬ πΆ β€ (π β¨ π) β§ Β¬ πΆ β€ (π β¨ π) β§ Β¬ πΆ β€ (π β¨ π)) β§ (πΆ β€ (π β¨ π) β§ πΆ β€ (π β¨ π) β§ πΆ β€ (π β¨ π))))) | |
10 | dalem.j | . . . . . . 7 β’ β¨ = (joinβπΎ) | |
11 | dalem.a | . . . . . . 7 β’ π΄ = (AtomsβπΎ) | |
12 | 9, 10, 11 | dalemqrprot 38514 | . . . . . 6 β’ (π β ((π β¨ π ) β¨ π) = ((π β¨ π) β¨ π )) |
13 | 8, 12 | eqtr4id 2791 | . . . . 5 β’ (π β π = ((π β¨ π ) β¨ π)) |
14 | 13 | breq2d 5160 | . . . 4 β’ (π β (π β€ π β π β€ ((π β¨ π ) β¨ π))) |
15 | 14 | adantr 481 | . . 3 β’ ((π β§ π) β (π β€ π β π β€ ((π β¨ π ) β¨ π))) |
16 | 7, 15 | mtbid 323 | . 2 β’ ((π β§ π) β Β¬ π β€ ((π β¨ π ) β¨ π)) |
17 | 1 | dalemccnedd 38553 | . . . . 5 β’ (π β π β π) |
18 | 17 | necomd 2996 | . . . 4 β’ (π β π β π) |
19 | 18 | adantl 482 | . . 3 β’ ((π β§ π) β π β π) |
20 | 1 | dalem-ddly 38552 | . . . . 5 β’ (π β Β¬ π β€ π) |
21 | 20 | adantl 482 | . . . 4 β’ ((π β§ π) β Β¬ π β€ π) |
22 | 13 | breq2d 5160 | . . . . 5 β’ (π β (π β€ π β π β€ ((π β¨ π ) β¨ π))) |
23 | 22 | adantr 481 | . . . 4 β’ ((π β§ π) β (π β€ π β π β€ ((π β¨ π ) β¨ π))) |
24 | 21, 23 | mtbid 323 | . . 3 β’ ((π β§ π) β Β¬ π β€ ((π β¨ π ) β¨ π)) |
25 | 1 | dalemclccjdd 38554 | . . . 4 β’ (π β πΆ β€ (π β¨ π)) |
26 | 25 | adantl 482 | . . 3 β’ ((π β§ π) β πΆ β€ (π β¨ π)) |
27 | 19, 24, 26 | 3jca 1128 | . 2 β’ ((π β§ π) β (π β π β§ Β¬ π β€ ((π β¨ π ) β¨ π) β§ πΆ β€ (π β¨ π))) |
28 | 5, 16, 27 | 3jca 1128 | 1 β’ ((π β§ π) β ((π β π΄ β§ π β π΄) β§ Β¬ π β€ ((π β¨ π ) β¨ π) β§ (π β π β§ Β¬ π β€ ((π β¨ π ) β¨ π) β§ πΆ β€ (π β¨ π)))) |
Colors of variables: wff setvar class |
Syntax hints: Β¬ wn 3 β wi 4 β wb 205 β§ wa 396 β§ w3a 1087 = wceq 1541 β wcel 2106 β wne 2940 class class class wbr 5148 βcfv 6543 (class class class)co 7408 Basecbs 17143 lecple 17203 joincjn 18263 Atomscatm 38128 HLchlt 38215 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7724 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7364 df-ov 7411 df-oprab 7412 df-proset 18247 df-poset 18265 df-lub 18298 df-glb 18299 df-join 18300 df-meet 18301 df-lat 18384 df-ats 38132 df-atl 38163 df-cvlat 38187 df-hlat 38216 |
This theorem is referenced by: dalem29 38567 dalem30 38568 dalem31N 38569 dalem32 38570 dalem33 38571 dalem34 38572 dalem35 38573 dalem36 38574 dalem37 38575 dalem40 38578 dalem46 38584 dalem47 38585 dalem49 38587 dalem50 38588 dalem58 38596 dalem59 38597 |
Copyright terms: Public domain | W3C validator |