Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > dalemrotps | Structured version Visualization version GIF version |
Description: Lemma for dath 37750. Rotate triangles 𝑌 = 𝑃𝑄𝑅 and 𝑍 = 𝑆𝑇𝑈 to allow reuse of analogous proofs. (Contributed by NM, 15-Aug-2012.) |
Ref | Expression |
---|---|
dalem.ph | ⊢ (𝜑 ↔ (((𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) ∧ (𝑌 ∈ 𝑂 ∧ 𝑍 ∈ 𝑂) ∧ ((¬ 𝐶 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝐶 ≤ (𝑄 ∨ 𝑅) ∧ ¬ 𝐶 ≤ (𝑅 ∨ 𝑃)) ∧ (¬ 𝐶 ≤ (𝑆 ∨ 𝑇) ∧ ¬ 𝐶 ≤ (𝑇 ∨ 𝑈) ∧ ¬ 𝐶 ≤ (𝑈 ∨ 𝑆)) ∧ (𝐶 ≤ (𝑃 ∨ 𝑆) ∧ 𝐶 ≤ (𝑄 ∨ 𝑇) ∧ 𝐶 ≤ (𝑅 ∨ 𝑈))))) |
dalem.l | ⊢ ≤ = (le‘𝐾) |
dalem.j | ⊢ ∨ = (join‘𝐾) |
dalem.a | ⊢ 𝐴 = (Atoms‘𝐾) |
dalem.ps | ⊢ (𝜓 ↔ ((𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐴) ∧ ¬ 𝑐 ≤ 𝑌 ∧ (𝑑 ≠ 𝑐 ∧ ¬ 𝑑 ≤ 𝑌 ∧ 𝐶 ≤ (𝑐 ∨ 𝑑)))) |
dalemrotps.y | ⊢ 𝑌 = ((𝑃 ∨ 𝑄) ∨ 𝑅) |
Ref | Expression |
---|---|
dalemrotps | ⊢ ((𝜑 ∧ 𝜓) → ((𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐴) ∧ ¬ 𝑐 ≤ ((𝑄 ∨ 𝑅) ∨ 𝑃) ∧ (𝑑 ≠ 𝑐 ∧ ¬ 𝑑 ≤ ((𝑄 ∨ 𝑅) ∨ 𝑃) ∧ 𝐶 ≤ (𝑐 ∨ 𝑑)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dalem.ps | . . . . 5 ⊢ (𝜓 ↔ ((𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐴) ∧ ¬ 𝑐 ≤ 𝑌 ∧ (𝑑 ≠ 𝑐 ∧ ¬ 𝑑 ≤ 𝑌 ∧ 𝐶 ≤ (𝑐 ∨ 𝑑)))) | |
2 | 1 | dalemccea 37697 | . . . 4 ⊢ (𝜓 → 𝑐 ∈ 𝐴) |
3 | 1 | dalemddea 37698 | . . . 4 ⊢ (𝜓 → 𝑑 ∈ 𝐴) |
4 | 2, 3 | jca 512 | . . 3 ⊢ (𝜓 → (𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐴)) |
5 | 4 | adantl 482 | . 2 ⊢ ((𝜑 ∧ 𝜓) → (𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐴)) |
6 | 1 | dalem-ccly 37699 | . . . 4 ⊢ (𝜓 → ¬ 𝑐 ≤ 𝑌) |
7 | 6 | adantl 482 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → ¬ 𝑐 ≤ 𝑌) |
8 | dalemrotps.y | . . . . . 6 ⊢ 𝑌 = ((𝑃 ∨ 𝑄) ∨ 𝑅) | |
9 | dalem.ph | . . . . . . 7 ⊢ (𝜑 ↔ (((𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) ∧ (𝑌 ∈ 𝑂 ∧ 𝑍 ∈ 𝑂) ∧ ((¬ 𝐶 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝐶 ≤ (𝑄 ∨ 𝑅) ∧ ¬ 𝐶 ≤ (𝑅 ∨ 𝑃)) ∧ (¬ 𝐶 ≤ (𝑆 ∨ 𝑇) ∧ ¬ 𝐶 ≤ (𝑇 ∨ 𝑈) ∧ ¬ 𝐶 ≤ (𝑈 ∨ 𝑆)) ∧ (𝐶 ≤ (𝑃 ∨ 𝑆) ∧ 𝐶 ≤ (𝑄 ∨ 𝑇) ∧ 𝐶 ≤ (𝑅 ∨ 𝑈))))) | |
10 | dalem.j | . . . . . . 7 ⊢ ∨ = (join‘𝐾) | |
11 | dalem.a | . . . . . . 7 ⊢ 𝐴 = (Atoms‘𝐾) | |
12 | 9, 10, 11 | dalemqrprot 37662 | . . . . . 6 ⊢ (𝜑 → ((𝑄 ∨ 𝑅) ∨ 𝑃) = ((𝑃 ∨ 𝑄) ∨ 𝑅)) |
13 | 8, 12 | eqtr4id 2797 | . . . . 5 ⊢ (𝜑 → 𝑌 = ((𝑄 ∨ 𝑅) ∨ 𝑃)) |
14 | 13 | breq2d 5086 | . . . 4 ⊢ (𝜑 → (𝑐 ≤ 𝑌 ↔ 𝑐 ≤ ((𝑄 ∨ 𝑅) ∨ 𝑃))) |
15 | 14 | adantr 481 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → (𝑐 ≤ 𝑌 ↔ 𝑐 ≤ ((𝑄 ∨ 𝑅) ∨ 𝑃))) |
16 | 7, 15 | mtbid 324 | . 2 ⊢ ((𝜑 ∧ 𝜓) → ¬ 𝑐 ≤ ((𝑄 ∨ 𝑅) ∨ 𝑃)) |
17 | 1 | dalemccnedd 37701 | . . . . 5 ⊢ (𝜓 → 𝑐 ≠ 𝑑) |
18 | 17 | necomd 2999 | . . . 4 ⊢ (𝜓 → 𝑑 ≠ 𝑐) |
19 | 18 | adantl 482 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → 𝑑 ≠ 𝑐) |
20 | 1 | dalem-ddly 37700 | . . . . 5 ⊢ (𝜓 → ¬ 𝑑 ≤ 𝑌) |
21 | 20 | adantl 482 | . . . 4 ⊢ ((𝜑 ∧ 𝜓) → ¬ 𝑑 ≤ 𝑌) |
22 | 13 | breq2d 5086 | . . . . 5 ⊢ (𝜑 → (𝑑 ≤ 𝑌 ↔ 𝑑 ≤ ((𝑄 ∨ 𝑅) ∨ 𝑃))) |
23 | 22 | adantr 481 | . . . 4 ⊢ ((𝜑 ∧ 𝜓) → (𝑑 ≤ 𝑌 ↔ 𝑑 ≤ ((𝑄 ∨ 𝑅) ∨ 𝑃))) |
24 | 21, 23 | mtbid 324 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → ¬ 𝑑 ≤ ((𝑄 ∨ 𝑅) ∨ 𝑃)) |
25 | 1 | dalemclccjdd 37702 | . . . 4 ⊢ (𝜓 → 𝐶 ≤ (𝑐 ∨ 𝑑)) |
26 | 25 | adantl 482 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → 𝐶 ≤ (𝑐 ∨ 𝑑)) |
27 | 19, 24, 26 | 3jca 1127 | . 2 ⊢ ((𝜑 ∧ 𝜓) → (𝑑 ≠ 𝑐 ∧ ¬ 𝑑 ≤ ((𝑄 ∨ 𝑅) ∨ 𝑃) ∧ 𝐶 ≤ (𝑐 ∨ 𝑑))) |
28 | 5, 16, 27 | 3jca 1127 | 1 ⊢ ((𝜑 ∧ 𝜓) → ((𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐴) ∧ ¬ 𝑐 ≤ ((𝑄 ∨ 𝑅) ∨ 𝑃) ∧ (𝑑 ≠ 𝑐 ∧ ¬ 𝑑 ≤ ((𝑄 ∨ 𝑅) ∨ 𝑃) ∧ 𝐶 ≤ (𝑐 ∨ 𝑑)))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 396 ∧ w3a 1086 = wceq 1539 ∈ wcel 2106 ≠ wne 2943 class class class wbr 5074 ‘cfv 6433 (class class class)co 7275 Basecbs 16912 lecple 16969 joincjn 18029 Atomscatm 37277 HLchlt 37364 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-proset 18013 df-poset 18031 df-lub 18064 df-glb 18065 df-join 18066 df-meet 18067 df-lat 18150 df-ats 37281 df-atl 37312 df-cvlat 37336 df-hlat 37365 |
This theorem is referenced by: dalem29 37715 dalem30 37716 dalem31N 37717 dalem32 37718 dalem33 37719 dalem34 37720 dalem35 37721 dalem36 37722 dalem37 37723 dalem40 37726 dalem46 37732 dalem47 37733 dalem49 37735 dalem50 37736 dalem58 37744 dalem59 37745 |
Copyright terms: Public domain | W3C validator |